Beispiel #1
0
 def cost(self, readouts, outputs):
     mu, sigma, coeff = self.components(readouts)
     #ipdb.set_trace()
     return GMM(outputs, mu, sigma, coeff)
Beispiel #2
0
bricks = [mlp_x, transition, mlp_gmm]

for brick in bricks:
    brick.weights_init = IsotropicGaussian(0.01)
    brick.biases_init = Constant(0.)
    brick.initialize()

##############
# Test model
##############

x_g = mlp_x.apply(x)
h = transition.apply(x_g)
mu, sigma, coeff = mlp_gmm.apply(h[-2])

cost = GMM(y, mu, sigma, coeff)
cost = cost.mean()
cost.name = 'sequence_log_likelihood'

cg = ComputationGraph(cost)
model = Model(cost)

#################
# Algorithm
#################

n_batches = 139 * 16

algorithm = GradientDescent(cost=cost,
                            parameters=cg.parameters,
                            step_rule=CompositeRule(