def test_generate_func_node(self):
        # SYMBOLIC REGRESSION TREES
        for i in range(100):
            node = self.generator.generate_func_node()
            self.assertEquals(node.node_type, NodeType.FUNCTION)

        # CLASSIFICATION TREES
        self.config["tree_generation"]["tree_type"] = "CLASSIFICATION_TREE"
        self.config["function_nodes"] = [{
            "type": "CLASS_FUNCTION",
            "name": "GREATER_THAN",
            "arity": 2,
            "data_range": {
                "lower_bound": 0.0,
                "upper_bound": 10.0,
                "decimal_places": 1
            }
        }]
        self.config["class_attributes"] = [
            "attrubte_1", "attrubte_2", "attrubte_3"
        ]
        generator = TreeGenerator(self.config)
        for i in range(100):
            node = generator.generate_func_node()
            class_attribute = node.class_attribute
            self.assertEquals(node.node_type, NodeType.CLASS_FUNCTION)
            self.assertTrue(class_attribute in self.config["class_attributes"])
Beispiel #2
0
def evaluate_trees():
    results = []
    response = {}

    # parse incomming data
    if request.data is not None:
        incomming = json.loads(request.data)
        config = incomming["config"]
        individuals = incomming["individuals"]

        # convert dict to trees
        parser = TreeGenerator(config)
        for individual in list(individuals):
            tree = parser.generate_tree_from_dict(individual)
            individuals.append(tree)
            individuals.remove(individual)

        evaluate(individuals, functions, config, results)

        # jsonify results
        response["results"] = []
        for individual in results:
            result = {
                "id": individual.tree_id,
                "score": individual.score,
            }
            response["results"].append(result)

    else:
        response = {"status": PlayNodeStatus.ERROR}

    return jsonify(response)
Beispiel #3
0
    def __init__(self, config, **kwargs):
        self.config = config
        self.recorder = kwargs.get("recorder", None)
        self.generator = TreeGenerator(self.config)

        # mutation stats
        self.method = None
        self.index = None
        self.mutation_probability = None
        self.random_probability = None
        self.mutated = False
        self.before_mutation = None
        self.after_mutation = None
Beispiel #4
0
    def test_greedy_over_selection(self):
        print "GREEDY-OVER SELECTION"

        # create population of size 1000
        self.config["max_population"] = 1000
        generator = TreeGenerator(self.config)
        population = generator.init()

        # greedy over selection
        old_pop_size = self.print_population("OLD", population)
        self.selection.greedy_over_selection(population)
        new_pop_size = self.print_population("NEW", population)

        self.assertEquals(old_pop_size, new_pop_size)
    def setUp(self):
        self.config = {
            "max_population": 50,

            "tree_generation": {
                "method": "FULL_METHOD",
                "initial_max_depth": 4
            },

            "evaluator": {
                "use_cache": True
            },

            "function_nodes": [
                {"type": "FUNCTION", "name": "ADD", "arity": 2},
                {"type": "FUNCTION", "name": "SUB", "arity": 2},
                {"type": "FUNCTION", "name": "MUL", "arity": 2},
                {"type": "FUNCTION", "name": "DIV", "arity": 2},
                {"type": "FUNCTION", "name": "COS", "arity": 1},
                {"type": "FUNCTION", "name": "SIN", "arity": 1}
            ],

            "terminal_nodes": [
                {"type": "CONSTANT", "value": 1.0},
            ],

            "input_variables": [
                {"type": "INPUT", "name": "x"}
            ],

            "data_file": "tests/data/sine.dat",

            "response_variables": [{"name": "y"}]
        }
        config.load_data(self.config)

        self.functions = GPFunctionRegistry("SYMBOLIC_REGRESSION")
        self.generator = TreeGenerator(self.config)
Beispiel #6
0
                "value": 10.0
            },
        ],
        "input_variables": [{
            "type": "INPUT",
            "name": "var1"
        }],
        "response_variables": [{
            "name": "answer"
        }],
        "data_file":
        "arabas_et_al-f1.dat"
    }
    config["max_population"] = 100000
    load_data(config, data_dir)
    generator = TreeGenerator(config)
    population = generator.init()
    results = []

    # TREE EVALUTOR 1
    start_time = time.time()
    tree_eval_1.evaluate(copy.deepcopy(population.individuals),
                         GPFunctionRegistry("SYMBOLIC_REGRESSION"), config,
                         results)
    end_time = time.time()
    time_taken = end_time - start_time
    print "Evaluator 1 took:", str(round(time_taken, 2)) + "s"

    # TREE EVALUTOR 2
    # functions = {
    #     "ADD": "+",
    def setUp(self):
        self.config = {
            "tree_generation": {
                "method": "GROW_METHOD",
                "initial_max_depth": 4
            },
            "mutation": {
                "methods": [
                    "POINT_MUTATION", "HOIST_MUTATION", "SUBTREE_MUTATION",
                    "SHRINK_MUTATION", "EXPAND_MUTATION"
                ],
                "probability":
                1.0
            },
            "function_nodes": [{
                "type": "FUNCTION",
                "name": "ADD",
                "arity": 2
            }, {
                "type": "FUNCTION",
                "name": "SUB",
                "arity": 2
            }, {
                "type": "FUNCTION",
                "name": "MUL",
                "arity": 2
            }, {
                "type": "FUNCTION",
                "name": "DIV",
                "arity": 2
            }, {
                "type": "FUNCTION",
                "name": "COS",
                "arity": 1
            }, {
                "type": "FUNCTION",
                "name": "SIN",
                "arity": 1
            }, {
                "type": "FUNCTION",
                "name": "RAD",
                "arity": 1
            }],
            "terminal_nodes": [{
                "type": "CONSTANT",
                "value": 1.0
            }, {
                "type": "CONSTANT",
                "value": 2.0
            }, {
                "type": "INPUT",
                "name": "x"
            }],
            "input_variables": [{
                "type": "INPUT",
                "name": "x"
            }]
        }
        self.functions = GPFunctionRegistry("SYMBOLIC_REGRESSION")
        self.generator = TreeGenerator(self.config)

        self.parser = TreeParser()
        self.mutation = TreeMutation(self.config)

        # create nodes
        left_node = Node(NodeType.CONSTANT, value=1.0)
        right_node = Node(NodeType.INPUT, name="x")

        cos_func = Node(NodeType.FUNCTION,
                        name="COS",
                        arity=1,
                        branches=[left_node])

        sin_func = Node(NodeType.FUNCTION,
                        name="SIN",
                        arity=1,
                        branches=[right_node])

        add_func = Node(NodeType.FUNCTION,
                        name="ADD",
                        arity=2,
                        branches=[cos_func, sin_func])

        # create tree
        self.tree = Tree()
        self.tree.root = add_func
        self.tree.update_program()
        self.tree.update_func_nodes()
        self.tree.update_term_nodes()
    def setUp(self):
        self.config = {
            "tree_generation": {
                "initial_max_depth": 4
            },
            "crossover": {
                "method": "POINT_CROSSOVER",
                "probability": 1.0
            },
            "function_nodes": [{
                "type": "FUNCTION",
                "name": "ADD",
                "arity": 2
            }, {
                "type": "FUNCTION",
                "name": "SUB",
                "arity": 2
            }, {
                "type": "FUNCTION",
                "name": "MUL",
                "arity": 2
            }, {
                "type": "FUNCTION",
                "name": "DIV",
                "arity": 2
            }, {
                "type": "FUNCTION",
                "name": "COS",
                "arity": 1
            }, {
                "type": "FUNCTION",
                "name": "SIN",
                "arity": 1
            }, {
                "type": "FUNCTION",
                "name": "RAD",
                "arity": 1
            }],
            "terminal_nodes": [{
                "type": "CONSTANT",
                "value": 1.0
            }, {
                "type": "CONSTANT",
                "value": 2.0
            }, {
                "type": "CONSTANT",
                "value": 2.0
            }, {
                "type": "CONSTANT",
                "value": 3.0
            }, {
                "type": "CONSTANT",
                "value": 4.0
            }, {
                "type": "CONSTANT",
                "value": 5.0
            }, {
                "type": "CONSTANT",
                "value": 6.0
            }, {
                "type": "CONSTANT",
                "value": 7.0
            }, {
                "type": "CONSTANT",
                "value": 8.0
            }, {
                "type": "CONSTANT",
                "value": 9.0
            }, {
                "type": "CONSTANT",
                "value": 10.0
            }],
            "input_variables": [{
                "type": "INPUT",
                "name": "x"
            }]
        }

        self.functions = GPFunctionRegistry("SYMBOLIC_REGRESSION")
        self.generator = TreeGenerator(self.config)

        self.crossover = TreeCrossover(self.config)
        self.parser = TreeParser()

        # create nodes
        left_node_1 = Node(NodeType.INPUT, name="x")
        right_node_1 = Node(NodeType.CONSTANT, value=2.0)
        node = Node(NodeType.CONSTANT, value=2.0)

        left_node_2 = Node(NodeType.CONSTANT, value=3.0)
        right_node_2 = Node(NodeType.CONSTANT, value=4.0)

        cos_func_1 = Node(NodeType.FUNCTION,
                          name="ADD",
                          arity=2,
                          branches=[left_node_1, right_node_1])

        sin_func_1 = Node(NodeType.FUNCTION,
                          name="SIN",
                          arity=1,
                          branches=[node])

        cos_func_2 = Node(NodeType.FUNCTION,
                          name="COS",
                          arity=1,
                          branches=[left_node_2])
        sin_func_2 = Node(NodeType.FUNCTION,
                          name="SIN",
                          arity=1,
                          branches=[right_node_2])

        add_func = Node(NodeType.FUNCTION,
                        name="ADD",
                        arity=2,
                        branches=[cos_func_1, sin_func_1])

        sub_func = Node(NodeType.FUNCTION,
                        name="SUB",
                        arity=2,
                        branches=[sin_func_2, cos_func_2])

        # create tree_1
        self.tree_1 = Tree()
        self.tree_1.root = add_func
        self.tree_1.update()

        print self.tree_1

        # create tree_2
        self.tree_2 = Tree()
        self.tree_2.root = sub_func
        self.tree_2.update()
Beispiel #9
0
    def setUp(self):
        self.config = {
            "max_population":
            10,
            "tree_generation": {
                "method": "FULL_METHOD",
                "initial_max_depth": 4
            },
            "evaluator": {
                "use_cache": True
            },
            "selection": {
                "method": "TOURNAMENT_SELECTION",
                "tournament_size": 2
            },
            "crossover": {
                "method": "POINT_CROSSOVER",
                "probability": 0.6
            },
            "mutation": {
                "methods": ["POINT_MUTATION"],
                "probability": 0.8
            },
            "function_nodes": [{
                "type": "FUNCTION",
                "name": "ADD",
                "arity": 2
            }, {
                "type": "FUNCTION",
                "name": "SUB",
                "arity": 2
            }],
            "terminal_nodes": [
                {
                    "type": "CONSTANT",
                    "value": 1.0
                },
            ],
            "input_variables": [{
                "type": "INPUT",
                "name": "x"
            }],
            "data_file":
            "tests/data/sine.dat",
            "response_variables": [{
                "name": "y"
            }],
            "recorder": {
                "store_file": "json_store_test.json",
                "compress": True
            }
        }
        config.load_data(self.config)

        self.functions = GPFunctionRegistry("SYMBOLIC_REGRESSION")
        self.generator = TreeGenerator(self.config)

        self.json_store = JSONStore(self.config)
        self.json_store.setup_store()

        self.population = self.generator.init()
        results = []
        cache = {}
        evaluate(self.population.individuals, self.functions, self.config,
                 results, cache, self.json_store)
        self.population.sort_individuals()

        self.selection = Selection(self.config, recorder=self.json_store)
        self.crossover = TreeCrossover(self.config, recorder=self.json_store)
        self.mutation = TreeMutation(self.config, recorder=self.json_store)
Beispiel #10
0
def gp_predict(train_data, test_data, train_cat, xx, yy):
    # setup
    config = {
        "max_population":
        800,
        "max_generation":
        30,
        "stale_limit":
        10,
        "tree_generation": {
            "tree_type": "CLASSIFICATION_TREE",
            "method": "RAMPED_HALF_AND_HALF_METHOD",
            "depth_ranges": [{
                "size": 1,
                "percentage": 1.0
            }]
        },
        "evaluator": {
            "use_cache": True
        },
        "selection": {
            "method": "TOURNAMENT_SELECTION",
            "tournament_size": 100
        },
        "crossover": {
            "method": "POINT_CROSSOVER",
            "probability": 0.8
        },
        "mutation": {
            "methods": ["SUBTREE_MUTATION"],
            "probability": 0.8
        },
        "function_nodes": [{
            "type": "CLASS_FUNCTION",
            "name": "GREATER_THAN",
            "arity": 2,
            "data_range": {
                "lower_bound": -1.0,
                "upper_bound": 1.0,
                "decimal_places": 2,
            }
        }, {
            "type": "CLASS_FUNCTION",
            "name": "LESS_THAN",
            "arity": 2,
            "data_range": {
                "lower_bound": -1.0,
                "upper_bound": 1.0,
                "decimal_places": 2,
            }
        }, {
            "type": "CLASS_FUNCTION",
            "name": "EQUALS",
            "arity": 2,
            "data_range": {
                "lower_bound": -1.0,
                "upper_bound": 1.0,
                "decimal_places": 2
            }
        }],
        "terminal_nodes": [
            {
                "type": "RANDOM_CONSTANT",
                "name": "category",
                "range": [0.0, 1.0]
            },
        ],
        "class_attributes": ["x", "y"],
        "input_variables": [{
            "name": "x"
        }, {
            "name": "y"
        }],
        "response_variables": [{
            "name": "category"
        }]
    }

    # load data
    config["data"] = {}
    config["data"]["rows"] = len(train_data)
    config["data"]["x"] = []
    config["data"]["y"] = []
    config["data"]["category"] = train_cat
    for row in train_data:
        config["data"]["x"].append(row[0])
        config["data"]["y"].append(row[1])

    functions = GPFunctionRegistry("CLASSIFICATION")
    generator = TreeGenerator(config)

    # genetic operators
    selection = Selection(config)
    crossover = TreeCrossover(config)
    mutation = TreeMutation(config)

    # run symbolic regression
    population = generator.init()

    details = play.play_details(
        population=population,
        evaluate=evaluate,
        functions=functions,
        selection=selection,
        crossover=crossover,
        mutation=mutation,
        print_func=print_func,
        stop_func=default_stop_func,
        config=config,
        editor=edit_trees,
    )
    play.play(details)

    best_tree = population.best_individuals[0]
    # gp_plot_dt(best_tree, True)

    # load test data
    config["data"] = {}
    config["data"]["rows"] = len(test_data)
    config["data"]["x"] = []
    config["data"]["y"] = []
    for row in test_data:
        config["data"]["x"].append(row[0])
        config["data"]["y"].append(row[1])

    # predict
    predicted = gp_eval.predict_tree(best_tree, functions, config)

    # load test data
    config["data"] = {}
    config["data"]["rows"] = xx.shape[0] * xx.shape[1]
    config["data"]["x"] = np.reshape(xx, xx.shape[0] * xx.shape[1])
    config["data"]["y"] = np.reshape(yy, yy.shape[0] * yy.shape[1])

    contour = gp_eval.predict_tree(best_tree, functions, config)
    contour = np.array(contour)
    contour = contour.reshape(xx.shape)

    return predicted, contour
Beispiel #11
0
    def test_evaluate(self):
        random.seed(10)
        # solution = {
        #     "results":
        #     [
        #         {"score": 15726642.002161335},
        #         {"score": 359.25843589015597},
        #         {"score": 92155571.22132382},
        #         {"score": 26186.46142920347},
        #         {"score": 15649304.847552022},
        #         {"score": 188.86069156360125},
        #         {"score": 23439.33097274221},
        #     ]
        # }

        # setup
        config = {
            "max_population" : 10,
            "max_generation" : 5,

            "tree_generation" : {
                "method" : "GROW_METHOD",
                "initial_max_depth" : 3
            },

            "evaluator": {
                "use_cache" : True
            },

            "selection" : {
                "method" : "TOURNAMENT_SELECTION",
                "tournament_size": 5
            },

            "crossover" : {
                "method" : "POINT_CROSSOVER",
                "probability" : 0.8
            },

            "mutation" : {
                "methods": [
                    "POINT_MUTATION",
                    "HOIST_MUTATION",
                    "SUBTREE_MUTATION",
                    "SHRINK_MUTATION",
                    "EXPAND_MUTATION"
                ],
                "probability" : 0.9
            },

            "function_nodes" : [
                {"type": "FUNCTION", "name": "ADD", "arity": 2},
                {"type": "FUNCTION", "name": "SUB", "arity": 2},
                {"type": "FUNCTION", "name": "MUL", "arity": 2},
                {"type": "FUNCTION", "name": "DIV", "arity": 2},
                {"type": "FUNCTION", "name": "COS", "arity": 1},
                {"type": "FUNCTION", "name": "SIN", "arity": 1}
            ],

            "terminal_nodes" : [
                {"type": "CONSTANT", "value": 1.0},
                {"type": "CONSTANT", "value": 2.0},
                {"type": "CONSTANT", "value": 2.0},
                {"type": "CONSTANT", "value": 3.0},
                {"type": "CONSTANT", "value": 4.0},
                {"type": "CONSTANT", "value": 5.0},
                {"type": "CONSTANT", "value": 6.0},
                {"type": "CONSTANT", "value": 7.0},
                {"type": "CONSTANT", "value": 8.0},
                {"type": "CONSTANT", "value": 9.0},
                {"type": "CONSTANT", "value": 10.0}
            ],


            "data_file" : "tests/data/sine.dat",

            "input_variables" : [{"type": "INPUT", "name": "x"}],
            "response_variables" : [{"name": "y"}]
        }
        parser = TreeParser()
        population = TreeGenerator(config).init()

        # create a dictionary of trees
        data = {"config": config, "individuals": []}
        for individual in population.individuals:
            tree_json = parser.tree_to_dict(individual, individual.root)
            data["individuals"].append(tree_json)

        # make sure population size is equals to number of trees
        population_size = len(population.individuals)
        individuals = len(data["individuals"])
        self.assertEquals(population_size, individuals)

        # evaluating individuals
        data = json.dumps(data)
        host = "localhost"
        port = 8080
        req_type = "POST"
        path = "evaluate"
        response = self.transmit(host, port, req_type, path, data)
        response = json.loads(response)
        print response
def gp_benchmark_loop(config):
    try:
        # setup
        random.seed(config["random_seed"])  # VERY IMPORTANT!
        load_data(config, config["call_path"])
        json_store = JSONStore(config)
        # functions = GPFunctionRegistry("SYMBOLIC_REGRESSION")
        generator = TreeGenerator(config)

        # genetic operators
        selection = Selection(config, recorder=json_store)
        crossover = TreeCrossover(config, recorder=json_store)
        mutation = TreeMutation(config, recorder=json_store)

        # setup the initial random population
        population = generator.init()

        # create play details
        details = play.play_details(
            population=population,
            functions=config["functions"],
            evaluate=evaluate,
            selection=selection,
            crossover=crossover,
            mutation=mutation,
            editor=edit_trees,
            stop_func=default_stop_func,
            # print_func=print_func,
            config=config,
            recorder=json_store)

        # run symbolic regression
        start_time = time.time()
        play.play(details)
        end_time = time.time()
        time_taken = end_time - start_time

        # print msg
        print("DONE -> pop: {0} cross: {1} mut: {2} seed: {3} [{4}s]".format(
            config["max_population"], config["crossover"]["probability"],
            config["mutation"]["probability"], config["random_seed"],
            round(time_taken, 2)))

        # log on completion
        if config.get("log_path", False):
            config.pop("data")
            msg = {
                "timestamp": time.mktime(datetime.now().timetuple()),
                "status": "DONE",
                "config": config,
                "runtime": time_taken,
                "best_score": population.find_best_individuals()[0].score,
                "best": str(population.find_best_individuals()[0])
            }
            log_path = os.path.expandvars(config["log_path"])
            log_file = open(log_path, "a+")
            log_file.write(json.dumps(msg) + "\n")
            log_file.close()

    except Exception as err_msg:
        import traceback
        traceback.print_exc()

        # log exception
        if config.get("log_path", False):
            msg = {
                "timestamp": time.mktime(datetime.now().timetuple()),
                "status": "ERROR",
                "config": config,
                "error": err_msg
            }
            log_path = os.path.expandvars(config["log_path"])
            log_file = open(log_path, "a+")
            log_file.write(json.dumps(msg) + "\n")
            log_file.close()

        raise  # raise the exception

    return config
Beispiel #13
0
    def setUp(self):
        random.seed(10)

        self.config = {
            "max_population": 10,

            "tree_generation": {
                "method": "FULL_METHOD",
                "initial_max_depth": 4
            },

            "function_nodes": [
                {"type": "FUNCTION", "name": "ADD", "arity": 2},
                {"type": "FUNCTION", "name": "SUB", "arity": 2},
                {"type": "FUNCTION", "name": "MUL", "arity": 2},
                {"type": "FUNCTION", "name": "DIV", "arity": 2},
                {"type": "FUNCTION", "name": "COS", "arity": 1},
                {"type": "FUNCTION", "name": "SIN", "arity": 1}
            ],

            "terminal_nodes": [
                {"type": "CONSTANT", "value": 1.0},
                {"type": "INPUT", "name": "x"},
                {"type": "INPUT", "name": "y"},
                {"type": "INPUT", "name": "z"}
            ],

            "input_variables": [
                {"name": "x"},
                {"name": "y"},
                {"name": "z"}
            ]
        }

        self.functions = GPFunctionRegistry("SYMBOLIC_REGRESSION")
        self.generator = TreeGenerator(self.config)
        self.parser = TreeParser()

        # create nodes
        left_node = Node(NodeType.CONSTANT, value=1.0)
        right_node = Node(NodeType.CONSTANT, value=2.0)

        cos_func = Node(
            NodeType.FUNCTION,
            name="COS",
            arity=1,
            branches=[left_node]
        )
        sin_func = Node(
            NodeType.FUNCTION,
            name="SIN",
            arity=1,
            branches=[right_node]
        )

        add_func = Node(
            NodeType.FUNCTION,
            name="ADD",
            arity=2,
            branches=[cos_func, sin_func]
        )

        # create tree
        self.tree = Tree()
        self.tree.root = add_func
        self.tree.update_program()
        self.tree.update_func_nodes()
        self.tree.update_term_nodes()
Beispiel #14
0
    def setUp(self):
        random.seed(0)
        self.config = {
            "max_population":
            20,
            "max_generation":
            5,
            "tree_generation": {
                "method": "GROW_METHOD",
                "initial_max_depth": 4
            },
            "evaluator": {
                "use_cache": True
            },
            "selection": {
                "method": "TOURNAMENT_SELECTION",
                "tournament_size": 2
            },
            "crossover": {
                "method": "POINT_CROSSOVER",
                "probability": 0.8
            },
            "mutation": {
                "methods": [
                    "POINT_MUTATION", "HOIST_MUTATION", "SUBTREE_MUTATION",
                    "SHRINK_MUTATION", "EXPAND_MUTATION"
                ],
                "probability":
                1.0
            },
            "function_nodes": [{
                "type": "FUNCTION",
                "name": "ADD",
                "arity": 2
            }, {
                "type": "FUNCTION",
                "name": "SUB",
                "arity": 2
            }, {
                "type": "FUNCTION",
                "name": "MUL",
                "arity": 2
            }, {
                "type": "FUNCTION",
                "name": "DIV",
                "arity": 2
            }, {
                "type": "FUNCTION",
                "name": "COS",
                "arity": 1
            }, {
                "type": "FUNCTION",
                "name": "SIN",
                "arity": 1
            }, {
                "type": "FUNCTION",
                "name": "RAD",
                "arity": 1
            }],
            "terminal_nodes": [{
                "type": "CONSTANT",
                "value": 1.0
            }, {
                "type": "CONSTANT",
                "value": 2.0
            }, {
                "type": "CONSTANT",
                "value": 2.0
            }, {
                "type": "CONSTANT",
                "value": 3.0
            }, {
                "type": "CONSTANT",
                "value": 4.0
            }, {
                "type": "CONSTANT",
                "value": 5.0
            }, {
                "type": "CONSTANT",
                "value": 6.0
            }, {
                "type": "CONSTANT",
                "value": 7.0
            }, {
                "type": "CONSTANT",
                "value": 8.0
            }, {
                "type": "CONSTANT",
                "value": 9.0
            }, {
                "type": "CONSTANT",
                "value": 10.0
            }],
            "input_variables": [{
                "type": "INPUT",
                "name": "x"
            }],
            "data_file":
            "tests/data/sine.dat",
            "response_variables": [{
                "name": "y"
            }]
        }
        config.load_data(self.config)
        self.functions = GPFunctionRegistry("SYMBOLIC_REGRESSION")
        self.generator = TreeGenerator(self.config)

        self.selection = Selection(self.config, recorder=None)
        self.crossover = TreeCrossover(self.config, recorder=None)
        self.mutation = TreeMutation(self.config, recorder=None)
Beispiel #15
0
    def setUp(self):
        self.config = {
            "max_population":
            50,
            "tree_generation": {
                "method": "FULL_METHOD",
                "initial_max_depth": 4
            },
            "evaluator": {
                "use_cache": True
            },
            "function_nodes": [{
                "type": "FUNCTION",
                "name": "ADD",
                "arity": 2
            }, {
                "type": "FUNCTION",
                "name": "SUB",
                "arity": 2
            }, {
                "type": "FUNCTION",
                "name": "MUL",
                "arity": 2
            }, {
                "type": "FUNCTION",
                "name": "DIV",
                "arity": 2
            }, {
                "type": "FUNCTION",
                "name": "COS",
                "arity": 1
            }, {
                "type": "FUNCTION",
                "name": "SIN",
                "arity": 1
            }],
            "terminal_nodes": [
                {
                    "type": "CONSTANT",
                    "value": 1.0
                },
            ],
            "input_variables": [{
                "type": "INPUT",
                "name": "x"
            }],
            "data_file":
            "tests/data/sine.dat",
            "response_variables": [{
                "name": "y"
            }]
        }
        config.load_data(self.config)

        self.functions = {
            "ADD": "+",
            "SUB": "-",
            "MUL": "*",
            "DIV": "/",
            "POW": "**",
            "SIN": "math.sin",
            "COS": "math.cos",
            "RAD": "math.radians",
            "LN": "math.ln",
            "LOG": "math.log"
        }
        self.generator = TreeGenerator(self.config)
Beispiel #16
0
    def setUp(self):
        self.config = {
            "max_population":
            10,
            "tree_generation": {
                "method": "FULL_METHOD",
                "initial_max_depth": 3
            },
            "selection": {
                "method": "ROULETTE_SELECTION"
            },
            "function_nodes": [{
                "type": "FUNCTION",
                "name": "ADD",
                "arity": 2
            }, {
                "type": "FUNCTION",
                "name": "SUB",
                "arity": 2
            }, {
                "type": "FUNCTION",
                "name": "MUL",
                "arity": 2
            }, {
                "type": "FUNCTION",
                "name": "DIV",
                "arity": 2
            }, {
                "type": "FUNCTION",
                "name": "COS",
                "arity": 1
            }, {
                "type": "FUNCTION",
                "name": "SIN",
                "arity": 1
            }, {
                "type": "FUNCTION",
                "name": "RAD",
                "arity": 1
            }],
            "terminal_nodes": [{
                "type": "CONSTANT",
                "value": 1.0
            }, {
                "type": "CONSTANT",
                "value": 2.0
            }, {
                "type": "CONSTANT",
                "value": 2.0
            }, {
                "type": "CONSTANT",
                "value": 3.0
            }, {
                "type": "CONSTANT",
                "value": 4.0
            }, {
                "type": "CONSTANT",
                "value": 5.0
            }, {
                "type": "CONSTANT",
                "value": 6.0
            }, {
                "type": "CONSTANT",
                "value": 7.0
            }, {
                "type": "CONSTANT",
                "value": 8.0
            }, {
                "type": "CONSTANT",
                "value": 9.0
            }, {
                "type": "CONSTANT",
                "value": 10.0
            }],
            "input_variables": [{
                "type": "INPUT",
                "name": "x"
            }]
        }

        self.functions = GPFunctionRegistry("SYMBOLIC_REGRESSION")
        self.generator = TreeGenerator(self.config)

        self.selection = Selection(self.config)
        self.population = self.generator.init()

        # give population random scores
        for inidividual in self.population.individuals:
            inidividual.score = random.triangular(1, 100)
    def setUp(self):
        self.config = {
            "max_population":
            10,
            "tree_generation": {
                "tree_type": "SYMBOLIC_REGRESSION",
                "method": "RAMPED_HALF_AND_HALF_METHOD",
                "initial_max_depth": 3
            },
            "function_nodes": [{
                "type": "FUNCTION",
                "arity": 2,
                "name": "ADD"
            }, {
                "type": "FUNCTION",
                "arity": 2,
                "name": "SUB"
            }, {
                "type": "FUNCTION",
                "arity": 2,
                "name": "MUL"
            }, {
                "type": "FUNCTION",
                "arity": 2,
                "name": "DIV"
            }, {
                "type": "FUNCTION",
                "arity": 1,
                "name": "COS"
            }, {
                "type": "FUNCTION",
                "arity": 1,
                "name": "SIN"
            }],
            "terminal_nodes": [{
                "type": "CONSTANT",
                "value": 1.0
            }, {
                "type": "INPUT",
                "name": "x"
            }, {
                "type": "INPUT",
                "name": "y"
            }, {
                "type": "RANDOM_CONSTANT",
                "data_range": {
                    "upper_bound": 10.0,
                    "lower_bound": -10.0,
                    "decimal_places": 1
                }
            }],
            "input_variables": [{
                "name": "x"
            }, {
                "name": "y"
            }]
        }

        self.functions = GPFunctionRegistry("SYMBOLIC_REGRESSION")
        self.generator = TreeGenerator(self.config)
        self.parser = TreeParser()
Beispiel #18
0
    def setUp(self):
        self.config = {
            "max_population":
            5,
            "tree_generation": {
                "tree_type": "CLASSIFICATION_TREE",
                "method": "FULL_METHOD",
                "initial_max_depth": 2
            },
            "evaluator": {
                "use_cache": True
            },
            "function_nodes": [{
                "type": "CLASS_FUNCTION",
                "name": "GREATER_THAN",
                "arity": 2,
                "data_range": {
                    "lower_bound": 0.0,
                    "upper_bound": 10.0,
                    "decimal_places": 0,
                }
            }, {
                "type": "CLASS_FUNCTION",
                "name": "LESS_THAN",
                "arity": 2,
                "data_range": {
                    "lower_bound": 0.0,
                    "upper_bound": 10.0,
                    "decimal_places": 0,
                }
            }, {
                "type": "CLASS_FUNCTION",
                "name": "EQUALS",
                "arity": 2,
                "decimal_precision": 2,
                "data_range": {
                    "lower_bound": 0.0,
                    "upper_bound": 10.0,
                    "decimal_places": 0,
                }
            }],
            "terminal_nodes": [
                {
                    "type": "RANDOM_CONSTANT",
                    "name": "species",
                    "range": [1.0, 2.0, 3.0]
                },
            ],
            "input_variables": [{
                "name": "sepal_length"
            }, {
                "name": "sepal_width"
            }, {
                "name": "petal_length"
            }, {
                "name": "petal_width"
            }],
            "class_attributes":
            ["sepal_length", "sepal_width", "petal_length", "petal_width"],
            "data_file":
            "tests/data/iris.dat",
            "response_variables": [{
                "name": "species"
            }]
        }
        config.load_data(self.config)

        self.functions = GPFunctionRegistry("CLASSIFICATION")
        self.generator = TreeGenerator(self.config)
        self.population = self.generator.init()