Beispiel #1
0
def run_net_2(training_data,
              test_data,
              monitor_evaluation_accuracy=True,
              monitoring_evaluation_cost=True):
    """ Runs net 2 """
    n_input, n_hidden, n_out = 784, 100, 10
    epochs, mini_batch_size, eta, lmbda = 30, 10, 0.5, 5
    net = network_test_2.NetworkTest2([n_input, n_hidden, n_out])
    net.stochastic_gradient_descent(
        training_data,
        epochs,
        mini_batch_size,
        eta,
        lmbda,
        evaluation_data=test_data,
        monitor_evaluation_accuracy=monitor_evaluation_accuracy,
        monitor_evaluation_cost=monitoring_evaluation_cost,
        monitor_training_accuracy=True,
        monitor_training_cost=True)
    if monitor_evaluation_accuracy:
        x, y = net.get_accuracy_per_epoch()
        plt = plot.Plot(x, 'Epoch', y, 'Accuracy (%)', 'Net 2 Accuracy',
                        'net_2_accuracy')
        plt.plot()
    if monitoring_evaluation_cost:
        x, y = net.get_cost_per_epoch()
        plt = plot.Plot(x, 'Epoch', y, 'Total Cost', 'Net 2 Cost',
                        'net_2_cost')
        plt.plot()
Beispiel #2
0
def main_pc():
    # this code uses pictures taken manualy
    # this is not the correct way to use the code but because of COVID-19, the setup was not obtainable
    folder = 'D:\_Udes\S4\Projet\ScanUS\Photos_boite/'
    files = os.listdir(folder)
    laser_angles = [-5, -3, -2, -1, -0.5, 0, 0.5, 1.5, 2, 3, 4]
    my_plot = plot.Plot(name='main plot', range=[0, 10])

    position_laser_ref_plaque = Matrix(pos=[259, 512, 150])
    angle_laser_cam = 11.1 * 2 * math.pi / 360 + math.atan(259 / 512)
    trans_plaque_to_cam_ref = Matrix(angles=[0, 0, angle_laser_cam])
    position_laser = mult([trans_plaque_to_cam_ref, position_laser_ref_plaque])

    for i in range(len(files)):
        filename = folder + files[i]
        img = cv2.imread(filename)
        x, y, fail = camera.find_red_dot(frame=img)

        if not fail:
            angle_table = ((i * 11.25) % 360) * 2 * math.pi / 360
            angle_laser = laser_angles[i // 32] * 2 * math.pi / 360
            p1, v1 = camera.get_red_dot_point_vector_in_world(
                angle_table, x, y)
            p2, v2 = laser.get_laser_point_vector_in_world(
                angle_table=angle_table, angle_wrist=angle_laser)
            p, error = intersect(p1, v1, p2, v2)
            my_plot.add_point(p + [error])

        if i > 11 * 32:
            break

    input()
    my_plot.close()
Beispiel #3
0
def test_velocity_dist_default_key():
    """Test velocity distribution."""
    tracking = load.Load("tests/tracking.txt")
    plotObj = plot.Plot(tracking)
    velocityTest = plotObj.velocityDistribution(ids=[0, 1])
    refData = tracking.getObjects(0)
    a = (np.sqrt(
        np.diff(refData.xBody.values)**2 + np.diff(refData.yBody.values)**2)
         ) / np.diff(refData.imageNumber.values)
    refData = tracking.getObjects(1)
    b = (np.sqrt(
        np.diff(refData.xBody.values)**2 + np.diff(refData.yBody.values)**2)
         ) / np.diff(refData.imageNumber.values)
    pooled = np.concatenate((a, b))
    np.testing.assert_array_equal(pooled, velocityTest[1][0])

    velocityTest = plotObj.velocityDistribution(ids=[0, 1], pooled=False)
    np.testing.assert_array_equal(a, velocityTest[1][0])
    np.testing.assert_array_equal(b, velocityTest[1][1])

    refData = tracking.getObjectsInFrames(0, indexes=list(range(0, 100)))
    a = (np.sqrt(
        np.diff(refData.xBody.values)**2 + np.diff(refData.yBody.values)**2)
         ) / np.diff(refData.imageNumber.values)
    velocityTest = plotObj.velocityDistribution(ids=[0],
                                                pooled=True,
                                                indexes=(0, 100))
    np.testing.assert_array_equal(a, velocityTest[1][0])
Beispiel #4
0
 def plot_pdf(self):
     """print self.pdf"""
     if self.pdf is None:
         print 'PDF not yet computed'
         pass
     else:
         labels = {}
         # mind the $ and r's for latex formatted printing
         labels['ylabel'] = r'PDF(\langle\bar{' + r'{}'.format(
             self.symbol) + r'_{\tau}}\rangle)'
         # lacks universality, but based on use is ok
         labels['xlabel'] = r'{} / {}'.format(self.symbol, self.unit)
         labels['title'] = (r'probability distribution of values of ' +
                            r'${}$'.format(self.symbol))
         labels['opath'] = 'output/'
         labels['oname'] = self.name + '_pdf'
         kwargs = {
             'linestyle': 'none',
             'label': '',
             'marker': 'o',
             'ms': 1.5,
             'lw': '1.0',
             'color': 'blue'
         }
         self.pdf_fig = pc.Plot(self.pdf, labels, **kwargs)
         self.pdf_fig.save()
         self.pdf_fig.cla()
Beispiel #5
0
    def make_plotlayout(self):
        self.plot_layout = QtGui.QGridLayout()
        self.plot_layout.setGeometry(QtCore.QRect(200, 200, 200, 200))
        #self.plot_layout.
        self.plots.append(plot.Plot())

        self.root_layout.addLayout(self.plot_layout)
        self.plot_layout.addWidget(self.plots[0])
Beispiel #6
0
 def plotThread(self):
     #print("1")
     plot1 = plot.Plot("x v y", "x", "y", np.empty(0), np.empty(0))
     while(1):
         #plot1.addData(time.time(), self.robots[0].getPos()[0])
         plot1.addData(self.robots[0].getPos()[0], self.robots[0].getPos()[1])
         plot1.plot()
         time.sleep(0.01)
Beispiel #7
0
 def do_GET(s):
   """Respond to a GET request."""
   plot.Plot(LOG_FILENAME, PLOT_FILENAME)
   s.send_response(200)
   s.send_header("Content-type", "image/png")
   s.end_headers()
   with open(PLOT_FILENAME, 'rb') as f:
     s.wfile.write(f.read())
Beispiel #8
0
 def do_plot_indexes(self, arg):
     indexes = arg.split(',', 1)
     a_plot = plot.Plot(plot.PlotCellIndex(indexes[0]))
     try:
         for index in indexes[1:]:
             p = plot.PlotCellIndex(index)
             a_plot.addSimple(plot.PlotCell((p.data, p.dates)))
     finally:
         a_plot.plot()
Beispiel #9
0
def main():
    num = 15
    st = stats.Loadstats()

    st.loadCpu(True)
    st.loadMem(True)
    st.loadTemp(True)

    time_lbl = []
    with open('time.log', 'r') as f:
        s = f.readlines()
        # print(len(s))
        for x in range(len(s) - 1, len(s) - num-1, -1):
            time_lbl.append(s[x])

    cpu_plt = []
    with open('cpu_use.log', 'r') as f:
        s = f.readlines()
        # print(len(s))
        for x in range(len(s) - 1, len(s) - num-1, -1):
            cpu_plt.append(s[x].split(',')[:-1])

    cpu = plot.Plot()
    cpu.plot(cpu_plt, 'm', time_lbl, num, 'cpu_usege.png',
            figname = 'CPU utilization', labelname = 'Processor:')

    mem_plt = []
    with open('mem.log', 'r') as f:
        s = f.readlines()
        for x in range(len(s) - 1, len(s) - num-1, -1):
            mem_plt.append(s[x])

    mem = plot.Plot()
    mem.plot(mem_plt, 's', time_lbl, num, 'mem_usege.png',
            figname = 'MEM utilization', labelname = 'Utilization:')

    temp_plt = []
    with open('cpu_temp.log', 'r') as f:
        s = f.readlines()
        for x in range(len(s) - 1, len(s) - num-1, -1):
            temp_plt.append(s[x].split(',')[:-1])
    temp = plot.Plot()
    temp.plot(temp_plt, 'm', time_lbl, num, 'temp.png',
            figname = 'CPU Temperature', labelname = 'Core:')
Beispiel #10
0
def main():
    # ------ CONFIGURE PARAMETERS ------
    params = set_params.Params()
    # ------ EXECUTE ------
    results = adagrad(params)
    # ------ PLOT ------
    algorithm = "adagrad"
    plt = plot.Plot(params)
    plt.update_algorithm(algorithm, results, thresholding=True)
    plt.plot_all()
Beispiel #11
0
    def draw_empty(self):
        self.canvas.Destroy()
        self.toolbar.Destroy()
        plt = plot.Plot()

        self.canvas = FigureCanvas(self, -1, plt.fig)
        self.toolbar = NavigationToolbar(self.canvas)

        self.sizer.Add(self.toolbar, 0, wx.EXPAND)
        self.sizer.Add(self.canvas, 1, wx.GROW)
        self.Layout()
Beispiel #12
0
    def position_selected(self, index):
        item = index.internalPointer()
        it = item.data(index.column(), QtCore.Qt.UserRole)

        if isinstance(it, position.position):
            for i in range(self.plot_layout.count()):
                self.plot_layout.takeAt(i)

            self.plot_layout.addWidget(plot.Plot(position=it))
        elif isinstance(it, position._security):
            pass
 def run_with_plot(self):
     """Open plot window and run menu in thread"""
     thread = MenuThread(self)
     self.plot = plot.Plot()
     try:
         thread.start()
         self.plot.run()
     finally:
         thread.join()
         self.plot = None
         if thread.exception is not None:
             raise thread.exception
Beispiel #14
0
 def __init__(self, rateTrain=0.0, lr=1e-3, nCell=5, trialID=0):
     
     # path ----
     self.modelPath = 'model'
     self.figurePath = 'figure'
     # ----
     
     # parameter ----
     dInput = 6
     self.dOutput = 3
     self.trialID = trialID
     # ----
         
     # func ----
     # data
     self.myData = data.NankaiData()
     # Test data, interval/seq/onehotyear/b 
     self.xTest, self.seqTest, self.yYearTest, self.yTest = self.myData.TrainTest()
     # Eval data nankai rireki
     self.xEval, self.seqEval, self.yYearEval, self.yEval = self.myData.Eval()
     
     # plot
     self.myPlot = plot.Plot(figurepath=figurePath, trialID=trialID)
     # ----
     
     # Placeholder ----
     # interval
     # pred paramb + vt-1
     self.odex = tf.compat.v1.placeholder(tf.float32,shape=[None, None, dInput])
     # vt
     self.odey = tf.compat.v1.placeholder(tf.float32,shape=[None, self.dOutput])
     # ----
     
     # neural network ----
     self.Vt = self.odeNN(self.odex)
     self.Vt_test = self.odeNN(self.odex, reuse=True)
     # ----
     
     # loss ----
     self.odeloss = tf.square(self.odey - self.Vt)
     self.odeloss_test = tf.square(self.odey - self.Vt_test)
     # ----
     #pdb.set_trace()
     # optimizer ----
     odeVars = tf.compat.v1.get_collection(tf.compat.v1.GraphKeys.TRAINABLE_VARIABLES,scope='odeNN') 
     self.optODE = tf.compat.v1.train.AdamOptimizer(lr).minimize(self.odeloss, var_list=odeVars)
     # ----
     
     # ----
     config = tf.compat.v1.ConfigProto(gpu_options=tf.compat.v1.GPUOptions(per_process_gpu_memory_fraction=0.1,allow_growth=True)) 
     self.sess = tf.compat.v1.Session(config=config)
     self.sess.run(tf.compat.v1.global_variables_initializer())
     self.saver = tf.compat.v1.train.Saver()
Beispiel #15
0
    def _build_gui(self):
        """
        Builds the interface of this window, the entire tree of widgets.
        """
        _vbox = gtk.VBox()
        self.add(_vbox)

        _toolbar = self._build_toolbar()
        _vbox.pack_start(_toolbar, False, False, 5)
        self._build_drawing_area(_vbox)
        self._plot_window = plot.Plot()
        self._plot_window.set_title(TITLE)
        self._plot_window.set_icon_from_file(ROBOT_FILE)
Beispiel #16
0
def main():
    # ------ CONFIGURE PARAMETERS ------
    params = set_params.Params()
    # ------ EXECUTE ------
    results = adam_lb_modified(params)
    # ------ PLOT ------
    if (params.flipping):
        algorithm = "adam-lb-modified-w-flipping"
    else:
        algorithm = "adam-lb-modified"
    plt = plot.Plot(params)
    plt.update_algorithm(algorithm, results, thresholding=True)
    plt.plot_all()
Beispiel #17
0
 def plot_data(self):
     # mind the $ and r's for latex formatted printing
     labels['ylabel'] = r'${} / {}$'.format(symbol, unit)
     # lacks universality, but based on use is ok
     labels['xlabel'] = 'timesteps in s'
     labels['title'] = ''
     kwargs = {
         'linestyle': 'solid',
         'label': '',
         'marker': 'o',
         'lw': '1.0',
         'color': 'blue'
     }
     self.fig = pc.Plot(self.data, labels, **kwargs)
Beispiel #18
0
def draw_map(out_path, dataset, metric, ts, format, dots, file_formats):
    tm = datetime.fromtimestamp(ts, timezone.utc)

    decorations = format not in ['bare', 'overlay']
    basemaps = format not in ['overlay']

    plt = plot.Plot(metric, tm, decorations=decorations, basemaps=basemaps)
    if metric == 'mufd':
        plt.scale_mufd()
    elif metric == 'fof2':
        plt.scale_fof2()
    else:
        plt.scale_generic()

    zi = dataset['/maps/' + metric][:]
    plt.draw_contour(zi)

    dotjson, dot_df = None, None

    if dots == 'curr':
        dotjson = str(dataset['/stationdata/curr'][...])
    elif dots == 'pred':
        dotjson = str(dataset['/stationdata/pred'][...])

    if dotjson is not None:
        dot_df = pd.read_json(dotjson)
        dot_df = filter_data(dot_df, metric, ts)
        plt.draw_dots(dot_df, metric)

    if decorations:
        plt.draw_title(
            metric, 'eSFI: %.1f, eSSN: %.1f' %
            (dataset['/essn/sfi'][...], dataset['/essn/ssn'][...]))

    if 'svg' in file_formats:
        plt.write(out_path + '.svg')
        subprocess.run(
            ['/usr/local/bin/svgo', '--multipass', out_path + '.svg'],
            check=True)

    if 'png' in file_formats:
        plt.write(out_path + '.png')

    if 'jpg' in file_formats:
        plt.write(out_path + '.jpg')

    if 'station_json' in file_formats and dotjson is not None:
        with open(out_path + '_station.json', 'w') as f:
            dot_df.to_json(f, orient='records')
Beispiel #19
0
    def __init__(self):
        # Config parameters
        self.EDGE_SIZE = 500
        self.NUM_POINTS = 200
        self.LOOKAHEAD = 1
        self.STOPPING_LOOKBACK = 10
        self.LINE_OPACITY = .03
        self.PADDING = 10
        self.RANDOM_INTERVAL = None
        self.CACHE_REFRESH = 10
        self.PLOT_INTERVAL = 50
        self.LAMBDA = 0

        self.original_img = get_image('/Users/delbalso/Downloads/dave.jpg')
        self.original_weights = get_image(
            '/Users/delbalso/Downloads/dave-mask.jpg')

        self.points = self.config_circle()

        self.ref_lines = {}
        for a, b in list(itertools.combinations(xrange(self.NUM_POINTS), 2)):
            if a > b: a, b = b, a
            self.ref_lines[a, b] = list(
                bresenham(self.points[a][0], self.points[a][1],
                          self.points[b][0], self.points[b][1]))

        # Set up main images
        self.img = normalize_image(
            (self.original_img - self.original_img.min()) /
            self.original_img.max() * 255, self.EDGE_SIZE)
        self.weights = normalize_image(self.original_weights, self.EDGE_SIZE)

        self.p = plot.Plot(self)

        # Set up derivative images
        # Raster is the image we're drawing to simulate thread
        self.raster = np.zeros((self.EDGE_SIZE, self.EDGE_SIZE)) + 255
        assert self.raster.shape == self.img.shape
        self.l1_errors = []
        self.l2_errors = []
        self.loss_delta = []
        self.update_diff()

        # start with a random point
        self.points_log = [randint(0, self.NUM_POINTS - 1)]

        self.process_start_time = time.strftime("%Y-%m-%d %H:%M:%S",
                                                time.gmtime())
        self.wheelOptimizer = WheelOptimizer(self)
Beispiel #20
0
def run_net_1(training_data, test_data):
    """ Runs net 1 """
    n_input, n_hidden, n_out = 784, 30, 10
    epochs, mini_batch_size, eta = 30, 10, 3.0
    net = network_test_1.NetworkTest1([n_input, n_hidden, n_out])
    net.stochastic_gradient_descent(training_data,
                                    epochs,
                                    mini_batch_size,
                                    eta,
                                    test_data=test_data,
                                    stdout=True)
    x, y = net.get_accuracy_per_epoch()
    plt = plot.Plot(x, 'Epoch', y, 'Accuracy (%)', 'Net 1 Accuracy',
                    'net_1_accuracy')
    plt.plot()
Beispiel #21
0
    def redraw(self, agg):
        self.canvas.Destroy()
        self.toolbar.Destroy()
        plt = plot.Plot()
        kind = self.frame.plot_type.GetItemLabel(
            self.frame.plot_type.GetSelection())
        errkind = self.frame.err_type.GetItemLabel(
            self.frame.err_type.GetSelection())
        plt.plot(agg, kind=kind, errkind=errkind.lower())  #, within='rows')

        self.canvas = FigureCanvas(self, -1, plt.fig)
        self.toolbar = NavigationToolbar(self.canvas)

        self.sizer.Add(self.toolbar, 0, wx.EXPAND)
        self.sizer.Add(self.canvas, 1, wx.LEFT | wx.TOP | wx.GROW)
        self.Layout()
Beispiel #22
0
    def __init__(self, *args, **kwargs):
        wx.Panel.__init__(self, *args, **kwargs)

        self.subplots = None
        self.rows = None
        self.cols = None
        self.yerr = None
        self.values = None

        self.sizer = wx.BoxSizer(wx.VERTICAL)
        self.SetSizer(self.sizer)

        plt = plot.Plot()
        self.canvas = FigureCanvas(self, -1, plt.fig)
        self.toolbar = NavigationToolbar(self.canvas)

        self.sizer.Add(self.toolbar, 0, wx.EXPAND)
        self.sizer.Add(self.canvas, 1, wx.GROW)
        self.Fit()
Beispiel #23
0
    def do_simulation(self, arg):
        ticker, startdate = arg.split()
        calc = stk.StockCalcIndex(self.stk_data_coll)
        sd = stk.StockData()
        sd.load(ticker, startdate)

        port = des.DecisionCollection(ticker, 50000)
        decision = des.DecisionSimpleSMA(ticker, (sd.Cs, sd.dates), port)
        decision.looper()
        print ticker, ":", str(port)

        port2 = des.DecisionCollection(ticker, 50000)
        decision2 = des.DecisionSimpleStopSMA(
            ticker,
            (sd.Cs, sd.dates),
            port2,
            risk_factor=0.01,
        )
        decision2.looper()
        print ticker, ":", str(port2)
        port2.print_all()

        a_plot = plot.Plot(plot.PlotCell((sd.Cs, sd.dates)))

        a_plot.addSimple(
            plot.PlotCell(calc.sma((sd.Cs, sd.dates), 200), overlay=True))
        a_plot.addSimple(
            plot.PlotCell(calc.sma((sd.Cs, sd.dates), 50), overlay=True))
        a_plot.addSimple(
            plot.PlotCell(calc.llv((sd.Cs, sd.dates), 100), overlay=True))

        a_plot.addSimple(
            plot.PlotCell(port2.get_enter_plot_cell(),
                          overlay=True,
                          color='go'))
        a_plot.addSimple(
            plot.PlotCell(port2.get_leave_plot_cell(),
                          overlay=True,
                          color='ro'))

        a_plot.addSimple(plot.PlotCell(port2.get_value_plot_cell()))
        a_plot.plot()
Beispiel #24
0
    def plot(self, refFlag=True, title='', xyPath=[]):
        """
        Plot solution 
        @param refFlag set to True if reference solution, False for specimen
        @param title add title to plot
        @param xyPath show Newton covnergence
        """

        import plot

        data = self.refDic
        if not refFlag:
            data = self.spcDic

        root = Tk()
        bxsize = self.boxsize()
        plot.Plot(root, data['grid'], width=800, height=800, \
                  title=title, boxsize=bxsize).draw(data['rho'], \
                                                     data['the'], xyPath=xyPath)
        root.mainloop()
Beispiel #25
0
def make_plot(settings, config):
    basename = 'plot{}'.format(hashargs(settings))
    name = os.path.join(config['plotdir'], basename).replace('\\', '/')

    # try to get plot from cache
    if not config['debug'] and config['cachedir'] and os.path.isfile(name +
                                                                     '.png'):
        return [
            dict([(e, name + '.' + e) for e in ['png', 'svg', 'pdf']]), None
        ]
    else:
        # lock long running plot creation
        with plot_lock:
            valid, errors = validate_settings(settings)

            if not valid:
                return [None, errors]

            p = plot.Plot(config, **settings)
            return [p.save(name), None]
Beispiel #26
0
    def __init__(self, max_count, *layers):
        self.count = 0  # count to change input
        self.max_count = max_count
        self.image_idx = 0
        self.training_data = None
        self.test_data = None
        self.currentNumber = None
        self.dictOfAttributeAdjustments = {}
        self.count_to_five = 0

        self.middle_layers_idx = []

        self.input = []
        self.neurons = [[]]
        self.layers = layers

        self.image_dir = None
        self.label_dir = None

        self.plot_reference = plot.Plot()
Beispiel #27
0
    def do_plot_collection(self, arg):
        calc = stk.StockCalcIndex(self.stk_data_coll)
        sd = stk.StockData()
        ticker, startdate = arg.split()

        sd.load(ticker, startdate)
        a_plot = plot.Plot(plot.PlotCell((sd.Cs, sd.dates)))

        a_plot.addSimple(
            plot.PlotCell(calc.sma((sd.Cs, sd.dates), 200), overlay=True))
        a_plot.addSimple(
            plot.PlotCell(calc.sma((sd.Cs, sd.dates), 50), overlay=True))
        a_plot.addSimple(
            plot.PlotCell(calc.llv((sd.Cs, sd.dates), 100), overlay=True))

        a_plot.addSimple(plot.PlotCell(calc.sma((sd.Vs, sd.dates), 20)))
        a_plot.addSimple(plot.PlotCell(calc.obv((sd.Cs, sd.Vs, sd.dates))))

        a_plot.addSimple(plot.PlotCell(calc.correlation_adj(
            (sd.Cs, sd.dates))))

        a_plot.plot()
Beispiel #28
0
    def do_plot_ticker_indexes(self, arg):
        calc = stk.StockCalcIndex(self.stk_data_coll)
        sd = stk.StockData()
        ticker, indexes, startdate = arg.split()
        indexes = indexes.split(',', 1)

        sd.load(ticker, startdate)
        a_plot = plot.Plot(plot.PlotCell((sd.Cs, sd.dates)))

        a_plot.addSimple(
            plot.PlotCell(calc.sma((sd.Cs, sd.dates), 200), overlay=True))
        a_plot.addSimple(
            plot.PlotCell(calc.sma((sd.Cs, sd.dates), 50), overlay=True))

        for index in indexes:
            p = plot.PlotCellIndex(index)
            p.truncate(startdate)
            a_plot.addSimple(plot.PlotCell((p.data, p.dates)))
            a_plot.addSimple(plot.PlotCell(calc.sma((p.data, p.dates), 20)))
            a_plot.addSimple(
                plot.PlotCell(calc.sma((p.data, p.dates), 50), overlay=True))

        a_plot.plot()
Beispiel #29
0
def main_pi():
    # This code is obsolete
    # This code needs to be changed with functions from laser.py if the actual laser tower is used
    my_plot = plot.Plot(name='main plot', range=[0, 10])
    laser_p = [0, 0, 180]
    with camera.init_picamera() as cam:
        input()
        motor.start_motor()
        temp = 0
        while (True):
            pic = camera.take_one_picture_pi(cam)
            # print(pic)
            ang = -motor.get_angle_motor()
            x, y = camera.find_red_dot(pic)
            if ang > temp:
                break

            floor_matrix = Matrix(angles=[0, 0, ang])
            cam_matrix = Matrix(pos=laser_p, angles=[0, 0, 0.26])
            result_matrix = mult([floor_matrix, cam_matrix])
            p2 = result_matrix.get_pos()
            v2 = result_matrix.get_vector_in_referential([0, 1, 0])

            p1, v1 = camera.get_red_dot_point_vector_in_world(ang, x, y)

            m, l = intersect(p1, v1, p2, v2)
            point = m + [l]
            my_plot.add_point(point)
            # print(m, l, sep=' ')
            temp = ang
            # k = input()
            # if k == 'q':
            #    break
        motor.restart_motor()
    input()
    my_plot.close()
Beispiel #30
0
y_train = np_utils.to_categorical(y_train, num_classes)
y_test = np_utils.to_categorical(y_test, num_classes)

model = Sequential()
model.add(Conv2D(32, (3, 3), activation='relu', input_shape=input_shape))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Conv2D(64, (3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(256, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(num_classes, activation='softmax'))

model.compile(loss='categorical_crossentropy',
              optimizer='adam',
              metrics=['accuracy'])

History = model.fit(x_train,
                    y_train,
                    validation_data=(x_test, y_test),
                    epochs=EPOCHS,
                    batch_size=BATCH_SIZE)

print(History.history.keys())

plot = plot.Plot(History)
plot.accuracy()
plot.loss()