Beispiel #1
0
def create_data():
    grasps = grasp_proxy.detect_grasps_whole_cloud(cloud, grasp_offsets)
    grasps = filter(
        lambda g: (grasp_space[0][0] < g.bottom[0] < grasp_space[0][
            1] and grasp_space[1][0] < g.bottom[1] < grasp_space[1][1] and
                   grasp_space[2][0] < g.bottom[2] < grasp_space[2][1]),
        grasps)

    print 'grasps after filter: ' + str(len(grasps))
    rviz_node.cloud_pub.publish(cloud_proxy.convert_to_point_cloud2(cloud))
    rviz_node.all_grasps_pub.publish(
        plot.createGraspsMarkerArray(grasps, rgba=[1, 0, 0, 0.5]))
    rviz_node.grasp_space_pub.publish(plot.createGraspsPosCube(grasp_space))

    image_3d = []
    image_2d = []
    for grasp in grasps:
        hand_des_3d = HandDescriptor(
            HandDescriptor.T_from_approach_axis_center(
                grasp.approach, grasp.axis, (grasp.bottom + grasp.top) / 2),
            32)
        hand_des_3d.generate_3d_binary_image(cloud)
        image_3d.append(hand_des_3d.image)

        hand_des_2d = HandDescriptor(
            HandDescriptor.T_from_approach_axis_center(
                grasp.approach, grasp.axis, (grasp.bottom + grasp.top) / 2))
        hand_des_2d.generate_depth_image(cloud)
        image_2d.append(hand_des_2d.image)

    image_3d = np.stack(image_3d, 0)
    image_2d = np.stack(image_2d, 0)

    f_3d = os.path.dirname(__file__) + '/../data/normal_shelf1_3d.npy'
    f_2d = os.path.dirname(__file__) + '/../data/normal_shelf1_2d.npy'
    try:
        old_3d = np.load(f_3d)
        if old_3d.shape[0] != 0:
            image_3d = np.vstack([image_3d, old_3d])
    except:
        pass
    try:
        old_2d = np.load(f_2d)
        if old_2d.shape[0] != 0:
            image_2d = np.vstack([image_2d, old_2d])
    except:
        pass
    finally:
        raw_input('write?')
        np.save(f_3d, image_3d)
        print 'current 3d data: ' + str(image_3d.shape[0])
        np.save(f_2d, image_2d)
        print 'current 2d data: ' + str(image_2d.shape[0])
Beispiel #2
0
image_3d = []

for grasp in grasps:
    hand_des_3d = HandDescriptor(
        HandDescriptor.T_from_approach_axis_center(
            grasp.approach, grasp.axis, (grasp.bottom + grasp.top) / 2), 32)
    hand_des_3d.generate_3d_binary_image(cloud)
    image_3d.append(hand_des_3d.image)

cnn.eval()
image_3d = np.stack(image_3d, 0)
inputs = torch.FloatTensor(image_3d).unsqueeze(1).cuda()
inputs = Variable(inputs, volatile=True)
outputs = cnn(inputs)
prediction = outputs.data.max(1, keepdim=True)[1]
prediction = prediction.squeeze().tolist()
edge_grasp = []
non_edge_grasp = []
for i in range(len(grasps)):
    if prediction[i] == 1:
        edge_grasp.append(grasps[i])
    else:
        non_edge_grasp.append(grasps[i])
rviz_node.edge_grasp_pub.publish(
    plot.createGraspsMarkerArray(edge_grasp, rgba=[1, 0, 0, 0.5]))
rviz_node.non_edge_grasp_pub.publish(
    plot.createGraspsMarkerArray(non_edge_grasp, rgba=[0, 0, 1, 0.5]))
rviz_node.cloud_pub.publish(cloud_proxy.convert_to_point_cloud2(cloud))
print 'edge grasp: {}'.format(len(edge_grasp))
print 'non-edge grasp: {}'.format(len(non_edge_grasp))