Beispiel #1
0
def labelview(labels, filename=None):
    """
    Visualización de labels asignados con colores. 
    
    Args:
        labels (Numpy nd Array): arreglo en formato de imagen con labels indicados
        filename (string): string con el nombre del archivo a guardar
    Returns:
        Visualización (plot.imgview): imagen con los colores asignados en lugar de las etiquetas
    """

    nueva = np.zeros((len(labels), len(labels[0])), dtype=int).astype(np.uint8)

    if len(nueva.shape) == 2:
        nueva = cv.cvtColor(nueva, cv.COLOR_GRAY2RGB)

    colores = [[], []]
    for i in range(len(labels)):
        for j in range(len(labels[i])):
            valor = labels[i, j]
            if valor != 0:
                if valor in colores[0]:
                    indice = colores[0].index(valor)
                    color = colores[1][indice]
                else:
                    color = [
                        random.randint(0, 255),
                        random.randint(0, 255),
                        random.randint(0, 255)
                    ]
                    colores[0].append(valor)
                    colores[1].append(color)
                nueva[i, j] = color
    plot.imgview(nueva, None, None, filename)
def labelview(labels):
    if len(labels.shape) == 2:
        labels = cv.cvtColor(labels, cv.COLOR_GRAY2RGB)

    colores = [[], []]
    for i in range(len(labels)):
        for j in range(len(labels[i])):
            valor = labels[i, j][0]
            if valor != 0:
                if valor in colores[0]:
                    indice = colores[0].index(valor)
                    color = colores[1][indice]
                else:
                    color = [
                        random.randint(0, 255),
                        random.randint(0, 255),
                        random.randint(0, 255)
                    ]
                    colores[0].append(valor)
                    colores[1].append(color)
                labels[i, j] = color
    plot.imgview(labels)
Beispiel #3
0
import math 

get_ipython().run_line_magic('matplotlib', 'inline')


# In[15]:


img = cv.imread("./wikipedia.png", cv.IMREAD_GRAYSCALE)


# In[16]:


print(img.shape)
plot.imgview(img)
normalizada = plot.imgnorm(img)


# In[17]:


hello = plot.hist(img)
print(normalizada.shape)


# In[18]:


plot.hist(normalizada)
plot.imgview(normalizada)
                else:
                    color = [
                        random.randint(0, 255),
                        random.randint(0, 255),
                        random.randint(0, 255)
                    ]
                    colores[0].append(valor)
                    colores[1].append(color)
                labels[i, j] = color
    plot.imgview(labels)


# In[82]:

huella = cv.imread('./intentar_wiki.pgm', cv.IMREAD_GRAYSCALE)
plot.imgview(huella)

# In[83]:

import sys
np.set_printoptions(threshold=sys.maxsize)

# In[118]:

img = cv.imread('./fprint3.pgm', cv.IMREAD_GRAYSCALE)
img = img[300:500, 300:500]
plot.imgview(img)
print(len(img))
print(len(img[0]))

# In[119]:
Beispiel #5
0

def hit_miss(img, kernel_hit, kernel_miss):
    img2 = cv.bitwise_not(img)
    erode_1 = cv.erode(img, kernel_hit, iterations=1)
    erode_2 = cv.erode(img2, kernel_miss, iterations=1)
    return cv.bitwise_and(erode_1, erode_2)


# In[4]:

imagen = cv.imread('./intentar.pgm', cv.IMREAD_GRAYSCALE)

# In[5]:

plot.imgview(imagen, True)

# In[6]:

kernel_hit = np.array([[0, 255, 0], [0, 255, 0], [0, 255, 0]], np.uint8)
kernel_miss = np.array([[255, 0, 255], [255, 0, 255], [255, 0, 255]], np.uint8)

# In[7]:

plot.imgcmp(kernel_hit, kernel_miss, True)

# In[8]:

plot.imgview(hit_miss(imagen, kernel_hit, kernel_miss), True)

# In[9]:
Beispiel #6
0
# In[1]:

import cv2 as cv
import matplotlib.pyplot as plt
import numpy as np
import plot

get_ipython().run_line_magic('matplotlib', 'inline')

# In[43]:

img = cv.imread('./ufmlogo.png', 0)
#img = cv.blur(img, (8, 8))
#ret,img = cv.threshold(img,100,255,cv.THRESH_BINARY)
img = cv.Canny(img, 50, 200)
plot.imgview(img)

# In[4]:

img2 = cv.imread('./encontrar.png', cv.IMREAD_GRAYSCALE)
img3 = cv.imread('./encontrar.png')
img3 = cv.cvtColor(img3, cv.COLOR_BGR2RGB)
plot.imgview(img3)

# In[5]:

template = img2[250:450, 420:600]
plot.imgview(template)

# In[57]:
Beispiel #7
0
import plot

from mpl_toolkits.mplot3d import axes3d

plt.style.use('dark_background')

get_ipython().run_line_magic('matplotlib', 'inline')


# In[3]:


img = cv.imread("./wikipedia.png", cv.IMREAD_GRAYSCALE)

img = plot.equalizar(img)
plot.imgview(img)


# In[4]:


thresh_val = 80
ret, thresh = cv.threshold(img, thresh_val, 255, cv.THRESH_BINARY)


# In[5]:


print(ret)

b_y = convolve(b, gy)


# In[169]:


mag1 = float64_to_uint8(gradient2magnitude(r_x, r_y))
mag2 = float64_to_uint8(gradient2magnitude(g_x, g_y))
mag3 = float64_to_uint8(gradient2magnitude(b_x, b_y))


# In[170]:


final = cv.merge((mag1, mag2, mag3))
plot.imgview(final, None, None, "rgb_magnitudes")


# In[216]:


ang1 = float64_to_uint8(gradient2angle(r_x, r_y))
ang2 = float64_to_uint8(gradient2angle(g_x, g_y))
ang3 = float64_to_uint8(gradient2angle(b_x, b_y))


# In[217]:


final = cv.merge((ang1, ang2, ang3))
plot.imgview(final, None, None, "rgb_angles")