''' if len(sys.argv) < 2: print help else: plotnum[int(sys.argv[1])] = True def poisson(R): ''' Function to go from Vp/Vs -> Poisson's ratio ''' return ((R**2 - 2) / (2 * (R**2 - 1))) ####################################################################### # F0 if plotnum[0]: arg1 = Args() arg1.addQuery("hk::H", "lt", "45") arg2 = Args() arg2.addQuery("hk::H", "lt", "40") arg3 = Args() arg3.addQuery("hk::H", "lt", "35") arg4 = Args() fstns = os.environ['HOME'] + '/thesis/stations.json' a = Params(fstns, arg1, ["mb::H"]) b = Params(fstns, arg2, ["mb::H"]) c = Params(fstns, arg2, ["hk::H"]) d = Params(fstns, arg3, ["hk::H"]) e = Params(fstns, arg3, ["wm::H"]) f = Params(fstns, arg4, ["wm::H"])
def rmsDifference(x, y): assert (len(x) == len(y)) n = len(x) md = 0 for i in range(n): md += (x[i] - y[i])**2 return np.sqrt(md / (n)) for i in range(1, 2): pro = os.environ['HOME'] + data[2 * i + 1] pub = os.environ['HOME'] + data[2 * i] arg = Args().addQuery("stdR", "lt", 0.06) p0 = Params(pro, ["H", "R", "stdR", "stdH"], arg) p2 = Params(pub, ["H", "R", "stdR", "stdH"], arg) p1 = Params(stnfile, ["hk::H", "hk::R", "hk::stdR", "hk::stdH"]) p0.sync(p2) stns = p0.stns R1 = p0.R R2 = p2.R H1 = p0.H H2 = p2.H
plotnum = [False for i in range(15)] if len(sys.argv) < 2: print help exit() else: plotnum[int(sys.argv[1])] = True #################################################### ## Figure Properties ####### width = 12 height = 5 legsize = height + 3 ########################### ## Prep Data arg = Args() arg.addQuery("status", "eq", "processed-ok") # Load station params d = Params(stnfile, ["hk::H","hk::R"], arg) arg = Args() m = Params(moonfile, ["H","Vp"]) m.filter(arg.addQuery("geoprov", "not in", "oceanic")) m.filter(arg.addQuery("geoprov", "not in", "Shelf")) ####################################################################### # F0 # CANADA if plotnum[0]: ## Kanamori Poisson Histogram # Set figure
########################################################################### # IMPORTS ########################################################################### import os, json import numpy as np import matplotlib.pyplot as plt from plotTools import Args, Params stnfile = os.environ['HOME'] + '/thesis/data/stations.json' #stdict = json.loads( dbfile.read() ) lim = 0.055 # Load station params d = Params(stnfile, ["hk::H", "hk::R", "hk::stdR", "hk::c0R", "hk::c1R"]) d.filter(Args().addQuery("status", "in", "processed")) ix1 = np.abs(d.hk_c0R - d.hk_R) < 2 * d.hk_stdR ix2 = np.abs(d.hk_c1R - d.hk_R) < 2 * d.hk_stdR ix3 = np.abs(d.hk_c1R - d.hk_c0R) < lim ixfail3 = (np.logical_not(ix1) | np.logical_not(ix2)) & np.logical_not(ix3) ixfail2 = (np.logical_not(ix1) | np.logical_not(ix2)) & ix3 ixpass3 = (ix1 & ix2) & ix3 ixpass2 = (ix1 & ix2) & np.logical_not(ix3) msg = [ "For stations failing (1) or (2) and (3) there is a likely significant lateral heterogeneity or some processing flaw and the station may be marked as unused.", "For stations failing (1) or (2) but passing (3) the data may be reasonable but my bootstrap error estimate is much too kind. Readjustment of error required.", "For station passing (1) and (2) and (3), Great.", "For stations passing (1) and (2) but failing (3) the cluster Vp/Vs difference may be above the arbitrary cut-off of +\- 0.05 but could be included provided the std Vp/Vs error is not above some other arbitrarily chosen cap."
plt.plot(M[0], M[1], 'ob', lw = lw, ms = ms, label = "normalized Vp vs H") plt.plot(x2, y2,'--r', lw = lw, label="Primary PCA: variance = {:2.1f}%".format(var[0]*100)) plt.plot(x1, y1,'--g', lw = lw, label="Secondary PCA: variance = {:2.1f}%".format(var[1]*100)) plt.legend(loc= 2, prop={'size': leg}) plt.ylabel("normalized Vp", size = label) plt.xlabel("normalized H", size = label) plt.grid(True) plt.axis("equal") ############################################################################# # FIG 2: Vp estimates and controlled source ############################################################################## if 0: maxerr = 0.25#0.24#0.21 arg = Args().addQuery("fg::stdVp", "lt", str(maxerr)) f = Params(stnfile, ["fg::H","fg::Vp", "fg::stdH", "fg::stdVp", "hk::stdR"], arg) c = Params(csfile, ["H","Vp"]) c.sync(f) stdVp = 2 * f.fg_stdVp # 2 stdError stdH = 2 * f.fg_stdH t = np.arange(len(f.fg_Vp)) corr = pearsonr(f.fg_Vp, c.Vp) print "Active Source vs FG Vp with {} stations: correlation = {}".format(len(f.stns), corr[0]) fig = plt.figure() ax1 = fig.add_subplot(111)