outfiles_list = [] 

for d in batch_parameters:

    dirname = c.experiment_name + '_clustered_reads'
    outfile = c.experiment_name + '_clustered_reads'

    if 'c_thresh' in d:
        dirname = dirname + '-c{}'.format(int(d['c_thresh']*100))
        outfile = outfile + '-c{}'.format(int(d['c_thresh']*100))
    if 'n_filter' in d:
        dirname = dirname + '-n{}'.format(d['n_filter'])
        outfile = outfile + '-n{}'.format(d['n_filter'])                
    if 'maskN' in d:
        dirname = dirname + '-maskN'
        outfile = outfile + '-maskN'
    
    path = os.path.join(c.clusters_outpath, dirname)            
    outfiles_list.append(os.path.join(path, outfile))
    

for cluster_file in outfiles_list:
    
    name = os.path.split(cluster_file)[1]  
    out6 = cluster_summary_plot(cluster_file, plot_hist = 0)  
    hist_counter(out6[1], bins=5000, range =(1,10000),label=name)
    
    

Beispiel #2
0
'''
Created on 28 Feb 2013

@author: musselle
'''
import os 
import sys 

import numpy as np 

from plot_utils import cluster_summary_plot, hist_counter

infileL6 = '/space/musselle/datasets/gazelles-zebras/clusters/L6clustered_reads'
infileL8 = '/space/musselle/datasets/gazelles-zebras/clusters/L8clustered_reads'

outL6 = cluster_summary_plot(infileL6, plot_hist = 0)
outL8 = cluster_summary_plot(infileL8, plot_hist = 0)

hist_counter(outL6[1], bins=5000, range =(1,10000),label='Lane 6')
hist_counter(outL8[1], bins=5000, range =(1,10000),label='Lane 8')