def get_time_insights(df): pop_cust_hour, pop_subs_hour, pop_hour = {}, {}, {} for day in bs.DAYS: dayframe = df[df['day_of_week'] == day] # pop_hour[day] = dayframe['hour'].mode()[0] cust_frame = dayframe[dayframe['User Type'] == 'Customer'] pop_cust_hour[day] = cust_frame['hour'].mode()[0] subs_frame = dayframe[dayframe['User Type'] == 'Subscriber'] pop_subs_hour[day] = subs_frame['hour'].mode()[0] traces = [ go.Line(x=list(pop_cust_hour.keys()), y=list(pop_cust_hour.values()), name='Customer', marker=go.scatter.Marker(color='rgb(55, 83, 109)')), go.Line(x=list(pop_subs_hour.keys()), y=list(pop_subs_hour.values()), name='Subscriber', marker=go.scatter.Marker(color='rgb(26, 118, 255)')) ] return traces
def GetTrace(datalist): tracelist = [] for data in datalist: trace = go.Bar( x=data["x"], y=data["y"], width=0.03 #mode="lines", # line=dict( # color="#feb4d1" # ), ) tracelist.append(trace) sinData = SinData() trace = go.Scatter(x=sinData['x'], y=sinData['y'], line=go.Line(color='#eeeeee')) tracelist.append(trace) osinData = oSinData() trace = go.Scatter(x=osinData['x'], y=osinData['y'], line=go.Line(color='#eeeeee')) tracelist.append(trace) return tracelist
def update_graph(input_value, c1, c2, yr, mon): data = [] df_industry = df_eda[df_eda['Industry'] == input_value] df_industry = df_industry[df_industry['Year'] == yr] df_industry = df_industry[df_industry['Month_y.1'] == mon] trace = go.Line(x=df_industry['Date_New_quarterly'].values, y=df_industry['marketcap'].values, text=df_industry['Industry'], mode='line', name="Market Cap", line_color='rgb(231,107,243)', marker=dict(color=c1)) data1 = go.Line(x=df_industry['Date_New_quarterly'], y=df_industry.groupby(['Industry', 'Date_New_quarterly' ])['marketcap'].sum(), mode="line", text=df_industry['Industry'], name="Total Market Cap", line_color='rgb(0,176,246)', marker=dict(color=c2)) data.append(trace) data.append(data1) layout = dict(xaxis={'title': "Date"}, yaxis={'title': "Market cap & Total Market cap"}, margin={ 'l': 40, 'b': 40, 't': 10, 'r': 0 }, hovermode='closest') return {"data": data, "layout": layout}
def populate_trace_for_extend(x=None, y=None, graph_legend_item_name='', trace_unique_id='', trace_unique_id_pattern=None, shape_type=''): #series list must be completely filled in using graph create order #'text' param if added generates error if not trace_unique_id_pattern: trace_unique_id_pattern = [] if not x: x = [] trace_pos = trace_unique_id_pattern.index(trace_unique_id) trace_list = [] for i in range(len(trace_unique_id_pattern)): if i == trace_pos: trace_extend = graph_objs.Scatter( x=x, y=y, name=graph_legend_item_name, line=graph_objs.Line(shape=shape_type)) trace_list.append(trace_extend) else: trace_empty = graph_objs.Scatter( x=[], y=[], line=graph_objs.Line(shape=shape_type)) trace_list.append(trace_empty) L.l.debug('Extending graph serie {} {}'.format(graph_legend_item_name, trace_unique_id)) return trace_list
def update_graph(type): if type == 'All': mask = data.groupby('Date')['Deaths'].max().sort_values( ascending=True).reset_index() return { 'data': [go.Line(x=mask['Date'], y=mask['Deaths'])], 'layout': go.Layout(title='Number of Deaths Per Day', xaxis={'title': 'Dates'}, yaxis={'title': 'Number of Deaths'}, paper_bgcolor='rgba(0,0,0,1)', plot_bgcolor='rgba(0,0,0,1)') } else: mask = data[data['Country/Region'] == type] masks = mask.groupby('Date')['Deaths'].max().sort_values( ascending=True).reset_index() return { 'data': [go.Line(x=masks['Date'], y=masks['Deaths'])], 'layout': go.Layout(title='Number of Deaths Per Day', xaxis={'title': 'Dates'}, yaxis={'title': 'Number of Deaths'}, paper_bgcolor='rgba(0,0,0,1)', plot_bgcolor='rgba(0,0,0,1)') }
def draw_graph(G, stations): node_trace = go.Scatter( x=[], y=[], text=[], mode='markers+text', textposition='top center', textfont=dict( family='arial', size=3, color='rgb(0,0,0)' ), hoverinfo='none', marker=go.Marker( showscale=False, color='rgb(200,0,0)', opacity=0.3, size=8, line=go.Line(width=1, color='rgb(0,0,0)'))) node_positions = {} for id in stations.index: lat, lng = stations.loc[id, ["Latitude", "Longitude"]].values node_positions[id] = [lat, lng] node_trace['x'].append(lat) node_trace['y'].append(lng) # node_trace['text'].append(id) # The edges will be drawn as lines: edge_trace = go.Scatter( x=[], y=[], line=go.Line(width=2, color='rgb(10,10,10)'), hoverinfo='none', mode='lines') for id in node_positions.keys(): for neigh_info in G.neighbors(id): x0, y0 = node_positions[id] x1, y1 = node_positions[neigh_info[0]] edge_trace['x'].extend([x0, x1, None]) edge_trace['y'].extend([y0, y1, None]) # Create figure: fig = go.Figure(data=go.Data([edge_trace, node_trace]), layout=go.Layout( title='Sample Network', titlefont=dict(size=16), showlegend=False, hovermode='closest', margin=dict(b=20, l=5, r=5, t=40), xaxis=go.XAxis(showgrid=False, zeroline=False, showticklabels=False), yaxis=go.YAxis(showgrid=False, zeroline=False, showticklabels=False))) py.plot(fig)
def createFigure(filename, isAutoOpen=True, isUploadToServer=False): # ------------Custom Candlestick Colors------------ # Make increasing ohlc sticks and customize their color and name opens = [datarow.open for datarow in dataRows] highs = [datarow.high for datarow in dataRows] lows = [datarow.low for datarow in dataRows] closes = [datarow.close for datarow in dataRows] fig_increasing = FigureFactory.create_candlestick( opens, highs, lows, closes, dates=datetime_xAxis, direction='increasing', marker=go.Marker(color='rgb(61, 153, 112)'), line=go.Line(color='rgb(61, 153, 112)')) # Make decreasing ohlc sticks and customize their color and name fig_decreasing = FigureFactory.create_candlestick( opens, highs, lows, closes, dates=datetime_xAxis, direction='decreasing', marker=go.Marker(color='rgb(255, 65, 54)'), line=go.Line(color='rgb(255, 65, 54)')) # Initialize the figure fig = fig_increasing fig['data'].extend(fig_decreasing['data']) # ------------Add extensions------------ for index, extensionList in enumerate(extensionLists): addLineExtension(fig, [data[0] for data in extensionList], [data[1] for data in extensionList], extensionNames[index], extensionLineTypes[index], extensionColors[index]) # ------------Update layout And Draw the chart------------ filename = chartTitle fig['layout'].update( title=filename, xaxis=dict(ticktext=[datarow.date for datarow in dataRows], tickvals=datetime_xAxis, showticklabels=False, showgrid=True, showline=True), ) plotly.offline.plot(fig, filename=filename + '.html', auto_open=isAutoOpen) print "----------The chart has been generated----------\n"
def build_data(digraph): if digraph.nodes(): first_node = list(digraph.nodes)[0] node_pos = nx.spring_layout(digraph, pos={first_node:(0,0)}, fixed=[first_node], seed=1) maxX.append(max([pos[0] for pos in node_pos.values()])) maxY.append(max([pos[1] for pos in node_pos.values()])) minX.append(min([pos[1] for pos in node_pos.values()])) minY.append(min([pos[1] for pos in node_pos.values()])) else: node_pos = nx.spring_layout(digraph, seed=1) node_trace = go.Scatter( x=[pos[0] for pos in node_pos.values()], y=[pos[1] for pos in node_pos.values()], text=name_list, mode='markers+text', textposition='top center', textfont=dict( family='arial', size=18, color='rgb(0,0,0)' ), hoverinfo='none', marker=go.Marker( showscale=False, color=[color_list[depth-1 % len(color_list)] for depth in depth_list], opacity=1, #size= [(start_size * 1/(depth)) for depth in depth_list], size= size_list, line=go.Line(width=1, color='rgb(0,0,0)'))) edgesX = [] edgesY = [] for edge in digraph.edges: try: x0, y0 = node_pos[edge[0]] x1, y1 = node_pos[edge[1]] edgesX.extend([x0, x1, None]) edgesY.extend([y0, y1, None]) except KeyError: continue edge_trace = go.Scatter( x=edgesX, y=edgesY, line=go.Line(width=1, color='rgb(150,150,150)'), hoverinfo='none', mode='lines') return go.Data([edge_trace, node_trace])
def gen_main_graph(child): '''First trace''' trace = go.Scatter(y=data.data.tail(n=10).Price, x=data.data.tail(n=10).index, line=go.Line(color='#009688'), hoverinfo='XBT/EUR', mode='lines+markers') '''styking of the graph element''' layout = go.Layout( height=450, xaxis=dict(range=[ data.data.tail(n=10).index.min(), data.data.tail(n=10).index.max() ], showgrid=True, showline=False, zeroline=False, fixedrange=False, showticklabels=False), yaxis=dict( range=[ min(list(data.data.tail(n=10).Price)) - Config.ranj * min(list(data.data.tail(n=10).Price)), max(list(data.data.tail(n=10).Price)) + Config.ranj * max(list(data.data.tail(n=10).Price)) ], showline=False, fixedrange=True, zeroline=False, ), margin=go.Margin( t=45, l=100, r=100, b=50, )) basedata = [trace] '''Checks for the Checkboxes to add a trace to the graph''' if Config.input1 % 2 != 0: move = data.moving_average('Price') movave = go.Scatter(y=move.tail(n=10).Price, x=move.tail(n=10).index, line=go.Line(color='#00695c'), hoverinfo='skip', mode='lines+markers') basedata.append(movave) return go.Figure(data=basedata, layout=layout)
def update_graph(Manager): if Manager == "All Managers": df_plot = df.copy() else: df_plot = df.loc[Manager][ 'Probability of Exceeding Threshold (%) '] #[df['Manager'] == Manager] # pv = pd.pivot_table( # df_plot, # index=['Name'], # columns=["Status"], # values=['Quantity'], # aggfunc=sum, # fill_value=0) trace1 = go.Line(x=df_plot.index, y=df_plot.values.ravel(), name='Probability of Exceeding Threshold (%) ') # trace2 = go.Bar(x=pv.index, y=pv[('Quantity', 'pending')], name='Pending') # trace3 = go.Bar(x=pv.index, y=pv[('Quantity', 'presented')], name='Presented') # trace4 = go.Bar(x=pv.index, y=pv[('Quantity', 'won')], name='Won') return { 'data': [trace1], 'layout': go.Layout( title='Probability of Rainfall Exceeding {} mm'.format(Manager), barmode='stack') }
def score_plot(matches, v): import chart_studio.plotly as py import plotly.graph_objs as go import plotly.offline as offline import plotly.express as px match = [lis for lis in matches if lis[1] != 0.0] total_recommendation = len(match) print(total_recommendation) #select top 60% score = [lis[1] for lis in matches if lis[1]] thres = round(max(score) * v, 2) score_thres = [lis[1] for lis in matches if lis[1] > thres] TP = len(score_thres) TN = 615 - total_recommendation FP = total_recommendation - TP print(TP, TN, FP) title = [lis[0] for lis in matches if lis[1] > thres] # plt.plot(title,score, color='g') # plt.xlabel('Title') # plt.ylabel('Score') # plt.title('Accuracy') # plt.show() data = [go.Line(x=title, y=score)] layout = go.Layout(title='Accuracy', width=700, height=700, xaxis_type='category') fig = go.Figure(data=data, layout=layout) #offline.plot(fig,filename='Accuracy.html') precision = (TP / (TP + FP)) recall = (TP / TP) F1 = 2 * ((precision * recall) / (precision + recall)) return print(precision, recall, F1)
def create_plot(data): df = pd.DataFrame(data) cities=df['city'].unique() graphs=[] for city in cities: cityData=df.loc[df['city']==city] fig=go.Figure(go.Line( x=cityData['date'], # assign x as the dataframe column 'x' y=cityData['num_trips'] )) fig.update_layout( title=city, xaxis_title="Journey Date", yaxis_title="No. of Trips", font=dict( family="Courier New, monospace", size=18, color="#7f7f7f" )) fig.layout.paper_bgcolor='rgba(0,0,0,0)' fig.layout.plot_bgcolor='rgba(0,0,0,0)' graphs.append(fig) ids = [cities[i] for i, _ in enumerate(graphs)] graphJSON = json.dumps(graphs, cls=plotly.utils.PlotlyJSONEncoder) return [graphJSON,ids]
def line_trace_course_fr_diff(course_name, colour, semester=None, dash_type=None, showlegend=True): qry = qry_location_diff_history(course_name) df1 = db_extract_query_to_dataframe(qry, postgres_cur, print_messages=False) if semester == 1: df1 = df1.loc[df1['semester'] == 1] elif semester == 2: df1 = df1.loc[df1['semester'] == 2] x = [i - 0.5 for i in range(1, 7)] # Create Semester 1 trace (solid) trace = go.Scatter( x=x, y=df1['fr_diff'].tolist(), name='<span style="color: {1}"> {0} </span>'.format( course_name, colour), text=None, textfont={ 'size': 14, 'color': colour }, line=go.Line(width=3, color=colour, dash=dash_type), marker=go.Marker(color=colour, size=10, symbol='diamond'), connectgaps=False, mode='markers', showlegend=showlegend, textposition='bottom right', ) return trace
def create_remainder_trace( df_cdf, key, size_class, area_values, count_label, is_first ): """ :param df_cdf: :param key: :param size_class: :param area_values: :param count_label: :param is_first: :return: """ area_values = np.add(area_values, 100.0 * df_cdf['y'][:-1]) scatter = go.Scatter( name='%s (%s)' % (size_class['name'], count_label), x=100.0 * df_cdf['x'][:-1], y=area_values, mode='lines', fill='tozeroy' if is_first else 'tonexty', line=go.Line( width=1.0, color=size_class['color'] ) ) return area_values, scatter
def plotly_single(ma, average_type, color, label, plot_type='line'): """A plotly version of plot_single. Returns a list of traces""" summary = list(np.ma.__getattribute__(average_type)(ma, axis=0)) x = list(np.arange(len(summary))) if isinstance(color, str): color = list(matplotlib.colors.to_rgb(color)) traces = [go.Scatter(x=x, y=summary, name=label, line={'color': "rgba({},{},{},0.9)".format(color[0], color[1], color[2])}, showlegend=False)] if plot_type == 'fill': traces[0].update(fill='tozeroy', fillcolor=color) if plot_type in ['se', 'std']: if plot_type == 'se': # standard error std = np.std(ma, axis=0) / np.sqrt(ma.shape[0]) else: std = np.std(ma, axis=0) x_rev = x[::-1] lower = summary - std trace = go.Scatter(x=x + x_rev, y=np.concatenate([summary + std, lower[::-1]]), fill='tozerox', fillcolor="rgba({},{},{},0.2)".format(color[0], color[1], color[2]), line=go.Line(color='transparent'), showlegend=False, name=label) traces.append(trace) return traces
def pcaWiki(self,file): self.formDataPCA(file) X_std = StandardScaler().fit_transform(self.X) sklearn_pca = sklearnPCA(n_components=2) Y_sklearn = sklearn_pca.fit_transform(X_std) traces = [] for name in self.names: trace = go.Scatter( x=Y_sklearn[self.y==name,0], y=Y_sklearn[self.y==name,1], mode='markers', name=name, marker=go.Marker( size=12, line=go.Line( color='rgba(217, 217, 217, 0.14)', width=0.5), opacity=0.8)) traces.append(trace) data = go.Data(traces) layout = go.Layout(xaxis=go.XAxis(title='PC1', showline=False), yaxis=go.YAxis(title='PC2', showline=False)) fig = go.Figure(data=data, layout=layout) if (self.outputType == 'file'): print(py.plot(fig,filename='pca')) else: return (py.plot(fig,include_plotlyjs='False',output_type='div'))
def pca(self,winSize): data = np.zeros((len(self.data),len(self.data['FUNC'][winSize]))) i=0 for dEl in sorted(self.data): self.data[dEl][winSize] = normalizeMaxMin(self.data[dEl][winSize]) data[i] = self.data[dEl][winSize] i+=1 X_std = StandardScaler().fit_transform(np.transpose(data)) sklearn_pca = sklearnPCA(n_components=2) Y_sklearn = sklearn_pca.fit_transform(X_std) traces = [] trace = go.Scatter( x=Y_sklearn[:,0], y=Y_sklearn[:,1], mode='markers', marker = go.Marker( size=12, line= go.Line( color='rgba(217, 217, 217, 0.14)', width=0.5), opacity=0.8)) traces.append(trace) data = go.Data(traces) layout = go.Layout(xaxis = go.XAxis(title='PC1', showline=False), yaxis = go.YAxis(title='PC2', showline=False)) fig = go.Figure(data=data, layout=layout) if self.outputType=='file': print(py.plot(fig, filename='pca.html')) else: return py.plot(fig, output_type='div')
def get_traces(trace,value,type,color=None,width=.2,opacity=.3): if not is_list(value): value=[value]*len(trace['y']) if values_minus: if is_list(values_minus): min_value=values_minus else: min_value=[values_minus]*len(trace['y']) else: min_value=value if 'percent' in type: y_up=[trace['y'][_]*(1+value[_]/100.00) for _ in range(len(value))] y_down=[trace['y'][_]*(1-min_value[_]/100.00) for _ in range(len(min_value))] else: y_up=[trace['y'][_]+value[_] for _ in range(len(value))] y_down=[trace['y'][_]-min_value[_] for _ in range(len(min_value))] y=trace['y'] upper=go.Scatter(y=y_up,mode='lines',showlegend=False, line=go.Line(width=width),x=trace['x']) if 'yaxis' in trace: upper['yaxis']=trace['yaxis'] if color: color=normalize(color) else: if 'color' in trace['line']: color=trace['line']['color'] else: color='charcoal' upper['line']['color']=color lower=upper.copy() name=trace['name']+'_' if 'name' in trace else '' upper.update(name=name+'upper') color=to_rgba(normalize(color),opacity) lower.update(fill='tonexty',fillcolor=color,name=name+'lower',y=y_down) return upper,lower
def create_plot(df): grouped_user_ids = df.groupby(df.user_id) # data = [ # # # go.Line( # x=df['date_posted'], # assign x as the dataframe column 'x' # y=df['reps'] # ), # go.Line( # x=df['date_posted'], # assign x as the dataframe column 'x' # y=df['reps'] # ) # # ] data = [] unique_users = df['user_id'].unique() for user in unique_users: df_inloop = grouped_user_ids.get_group(user) name = User.query.get(user) data.append( go.Line(name=f'user_id={user}, name ={name.username}', x=df_inloop['date_posted'], y=df_inloop['reps'])) graphJSON = json.dumps(data, cls=plotly.utils.PlotlyJSONEncoder) return graphJSON
def make_ideo_shape(path, line_color, fill_color): return dict( line=go.Line(color=line_color, width=0.45), path=path, type="path", fillcolor=fill_color, layer="below", )
def graph_draw(sensor_data): data = [go.Line(x=list(range(len(sensor_data))), y=sensor_data)] layout = plotly.graph_objs.Layout(title='sleeping_pattern_chart') figure = plotly.graph_objs.Figure(data=data, layout=layout) plotly.offline.plot(figure, filename='sleeping_pattern_chart.html')
def create_plot(json_response=False): current_date = datetime.date.today() starting_date = current_date - datetime.timedelta(days=60) all_reals = Real.query.filter_by( category="TOTAL CAUSAS SISTEMA RESPIRATORIO").filter( and_(Real.date >= starting_date)).all() result_real = reals_schema.dump(all_reals) end_date = current_date + datetime.timedelta(days=60) all_forecasteds = Forecasted.query.filter_by( category="TOTAL CAUSAS SISTEMA RESPIRATORIO").filter( and_(Forecasted.date >= current_date, Forecasted.date <= end_date)).all() result_forecasted = forecasteds_schema.dump(all_forecasteds) df_real = pd.DataFrame.from_dict(result_real) df_forecasted = pd.DataFrame.from_dict(result_forecasted) data = [ go.Line( x=df_real['date'], # assign x as the dataframe column 'x' y=df_real['value'], name="Real"), go.Line( x=df_forecasted['date'], # assign x as the dataframe column 'x' y=df_forecasted['value'], name="Estimado") ] layout = { "xaxis": { "title": "Fecha" }, "yaxis": { "title": "Atenciones por Urgencia Respiratoria" } } fig = dict(data=data, layout=layout) graphJSON = json.dumps(fig, cls=plotly.utils.PlotlyJSONEncoder) if json_response: graphJSON = json.loads(graphJSON) return jsonify(graphJSON) else: return graphJSON
def graphRRline(df1): df_w1 = df1.loc[df['intervention'] == 'week1'] df_nw1 = df1.loc[df['intervention'] != 'week1'] # all traces for plotly traces = [] for i, r in df_w1.iterrows(): # check for valid colour value j = i while j > len(colourList)-1: j = j-len(colourList) edge_trace=go.Scatter( x=[1, 2], y=[r['w1_drr'], r['w2_drr']], text="%s" % r['course_code'], line=go.Line(width=2, color=colourList[j]), hoverinfo=r['course_code'], connectgaps=False, mode='lines+markers', showlegend=False) traces.append(edge_trace) title = 'CES course response rate' title += '<br>' title += '{} '.format('Intervention in Week 1') fig = {'data': traces, 'layout': go.Layout( title=title, showlegend=True, xaxis=dict( title='Week', range=[0.5, 2.5], autotick=False, ticks='outside', tick0=1, dtick=1, ticklen=5, zeroline=False, ), yaxis=dict( title='Change in response rate (2017-2018)', ticklen=5, zeroline=True, zerolinewidth=4, ), width=1200, height=800, hovermode='closest', margin=dict(b=50, l=50, r=50, t=50), hidesources=True, ) } plotly.offline.plot(fig, filename='C:\\Peter\\CoB\\CES Response Rates\\rr.html') return fig
def make_ribbon(l, r, line_color, fill_color, radius=0.2): poligon = ctrl_rib_chords(l, r, radius) b, c = poligon return dict(line=go.Line(color=line_color, width=0.5), path=make_q_bezier(b) + make_ribbon_arc(r[0], r[1]) + make_q_bezier(c[::-1]) + make_ribbon_arc(l[1], l[0]), type='path', fillcolor=fill_color, layer='below')
def display_linegraphs(selected_values): traces = [] [ traces.append( go.Line(y=(features_log.loc[:, str(val)].values), name=str(val))) for val in selected_values ] layout = go.Layout(legend=dict(orientation="h")) return go.Figure(data=traces, layout=layout)
def get_reference_trace_for_append(graph_unique_name='', shape_type=''): global g_reference_trace_id return graph_objs.Scatter(x=[utils.get_base_location_now_date()], y=[0], name=graph_unique_name, text=g_reference_trace_id, mode='none', showlegend=False, line=graph_objs.Line(shape=shape_type))
def plot_remainder( data: dict, key: str, label: str, is_log: bool = False, normal_comparison = True ): area_values = np.zeros(len(data['df_expected']['x']) - 1) traces = [] for size_class in cd.shared.SIZE_CLASSES: size_data = data['sizes'][size_class['id']] track_count = int(size_data['count']) area_values, area_trace = create_remainder_trace( df_cdf=size_data['df_cdf'], key=key, area_values=area_values, is_first=cd.shared.SIZE_CLASSES.index(size_class) < 1, size_class=size_class, count_label=locale.format('%d', track_count, grouping=True) ) traces.append(area_trace) title = 'Cumulative Remainder of {} Deviations ({} Tracks)'.format( label, locale.format('%d', data['count'], grouping=True) ) y_axis = {'title': 'Population Remaining (%)'} if is_log: y_axis['title'] = 'Log {}'.format(y_axis['title']) y_axis['type'] = 'log' if normal_comparison: traces.append(go.Scatter( name='Normal Threshold', x=100.0 * data['df_expected']['x'], y=data['df_expected']['y'], mode='lines', line=go.Line( color='rgba(0, 0, 0, 0.75)', dash='dash', width=1.0 ) )) cd.display.plotly( data=traces, layout=make_layout( data, title=title, fixed=True, y_axis=y_axis ) )
def update_graph(selected_options): data = [] for symbol in selected_options: history = get_history(symbol, 180) #log.debug(type(history)) data.append(go.Line(x=history.index, y=history['close'], text=symbol)) # log.debug(history) return {'data': data, 'layout': go.Layout(yaxis={'title': 'Close Price'})}
def update_graph(type1): if type1 == 'All': masks = data1['detected_state'].value_counts().reset_index() return { 'data': [go.Line(x=masks['index'], y=masks['detected_state'])], 'layout': go.Layout(title='Number of Patients', xaxis={'title': 'Number of Patients'}, yaxis={'title': 'states'}) } else: status = data1[data1['current_status'] == type1] mask4 = status['detected_state'].value_counts().reset_index() return { 'data': [go.Line(x=mask4['index'], y=mask4['detected_state'])], 'layout': go.Layout(title='Number of Patients', xaxis={'title': 'Number of patients'}, yaxis={'title': 'States'}) }
def history_plotly(hist): init_notebook_mode(connected=True) loss = [] val_loss = [] acc = [] val_acc = [] for history_temp in hist: loss += history_temp['loss'] val_loss += history_temp['val_loss'] acc += history_temp['acc'] val_acc += history_temp['val_acc'] iplot([ go.Line(y=loss, name='loss'), go.Line(y=val_loss, name='val_loss'), go.Line(y=acc, name='acc'), go.Line(y=val_acc, name='val_acc') ], show_link=False)