Beispiel #1
0
def get_bar_plot(parents, colors, labels, cnts, title, fn_bar):
    from plotly.offline import plot as pplot
    import plotly.graph_objs as pgo
    pplot_para = {}
    pplot_para['data'] = [
        pgo.Bar(x=labels, y=cnts, text=parents, marker=dict(color=colors))
    ]
    pplot_para['layout'] = pgo.Layout(title='distribution of {}'.format(title),
                                      xaxis=dict(title=title),
                                      yaxis=dict(title='frequency'))
    pplot(pplot_para, filename=fn_bar)
data_cols = ['Retail/Recreation', 'Workplace', 'Parks', 'Residential', 'Grocery/Pharmacy']
google_state.columns.name='Category'

# State
fig = px.line(
    google_state, 
    x=google_state.index, 
    y=data_cols,
    title='Wisconsin Google Mobility',
    range_y=[-90, 200],
    )
fig.update_layout(legend_title_text='Category')

pplot(
      fig, 
      filename='.\\docs\\assets\\plotly\\Mobility-Google-WI.html',
      include_plotlyjs='cdn',
      )
fig.write_image(
    '.\\docs\\assets\\Mobility-Google-WI.png',
    width=700,
    height=600,
    engine='kaleido',
    )



#%% Comparison
category = ['Workplace', 'Retail/Recreation']
counties = ['Milwaukee County', 'Dane County', 'Brown County']
# take out whole-state
Beispiel #3
0
#%% Scatter plots

# Case % vs overcrowding
fig = px.scatter(
    prisons,
    x='Crowding %',
    y='Case %',
    title='Case % vs Crowding',
    text='Scatter Name',    
    )

fig.update_traces(textposition='middle left')

pplot(fig, 
      filename='.\\docs\\assets\\plotly\\Prisons-Crowded.html',
      include_plotlyjs='cdn',
      )

save_png = '.\\docs\\assets\\Prisons-Crowding.png'
fig.write_image(
    save_png,
    width=700,
    height=500,
    engine='kaleido',
)
os.startfile(save_png)

# Case % vs size
fig = px.scatter(
    prisons,
    x='Population',
             y1=1,
             xref='x',
             x0=date,
             x1=date))
    date = date + delta

fig.update_layout(shapes=dividers)
fig.add_annotation(text='Christmas',
                   x=datetime.datetime(2020, 12, 25, 0),
                   y=1400,
                   yanchor='bottom',
                   xanchor='center',
                   showarrow=False,
                   textangle=270)

pplot(fig, include_plotlyjs='cdn', filename=plotpath + '\\Christmas-WI.html')

save_png = '.\\docs\\assets\\Christmas-WI.png'
fig.write_image(
    save_png,
    width=700,
    height=340,
    engine='kaleido',
)
os.startfile(save_png)

#%% Christmas surge for Milwaukee

# get milwaukee test numbers by copying html of the dashboard and scraping it
# get this originally by doing a browser html inspection of the graph on the Milwaukee county dashboard,
# then copying it to a text file.  The tooltips of the graph are stored in "aria-label" labels, so
Beispiel #5
0
# take out 'variable=' part of the axis titles
fig.for_each_annotation(
    lambda a: a.update(
        text=a.text.split("=")[-1],
        font=dict(size=15),
        )
    )

fig.update_traces(textposition='outside')


# other layout
fig.update_layout(showlegend=False)

pplot(fig,
      filename='.\\docs\\assets\\plotly\\Age-Covid.html',
      include_plotlyjs='cdn',
      )

# save_png = '.\\docs\\assets\\Age-Covid_2020-12-11.png'
save_png = '.\\docs\\assets\\Age-Covid.png'
fig.write_image(
    save_png,
    width=700,
    height=700,
    engine='kaleido',
)
os.startfile(save_png)

# interesting - ICU admissions are highest for late middle age. Elderly are 
# admitted to ICU lower than proportional to their hospitalization status. I 
# guess because it's less likely to do them any good.
Beispiel #6
0
    # reindex on county name
    countiesWI = countiesWI.set_index('NAME')
    # sort by name
    countiesWI = countiesWI.sort_index()
    # add Region column
    countiesWI['Region'] = region_map

    # chloropleth by population from geopandas
    # base = countiesWI.plot(column='Region', color=colors, edgecolor='w', linewidth=0.5)

    # filter counties shapefile to WI, convert to JSON format string, then decode
    # to dictionary with json.loads()
    countiesJS = json.loads(countiesWI.to_json())

    fig = px.choropleth(countiesWI,
                        geojson=countiesJS,
                        locations=countiesWI.index,
                        color='Region',
                        color_discrete_map=color_dict,
                        category_orders={'Region': list(color_dict.keys())},
                        title='WI Regions',
                        projection='mercator')
    fig.update_geos(fitbounds='locations', visible=False)
    fig.update_traces(marker_line_color='white')

    pplot(
        fig,
        filename=plotpath + '\\Map-Region.html',
        include_plotlyjs='cdn',
    )
                         showscale=False),
              row=2,
              col=1)

fig.add_trace(go.Surface(x=X, y=Y, z=Z2, colorscale='Viridis',
                         showscale=False),
              row=2,
              col=2)

c1 = np.linspace(0.5, 2.5, nd)
c2 = np.linspace(10, 20, nd)

Z1 = np.zeros((nd, nd))
Z2 = np.zeros((nd, nd))
for i in range(nd):
    for j in range(nd):
        Z1[j, i] = R1.evaluate([c1[i], c2[j]])
        Z2[j, i] = R2.evaluate([c1[i], c2[j]])

fig.add_trace(go.Surface(x=X, y=Y, z=Z1, colorscale='Viridis',
                         showscale=False),
              row=3,
              col=1)

fig.add_trace(go.Surface(x=X, y=Y, z=Z2, colorscale='Viridis',
                         showscale=False),
              row=3,
              col=2)

pplot(fig)
Beispiel #8
0
def get_band_html(vasprun_file, kpts_file):
    vasp = VaspRun(vasprun_file)
    rec_lat = vasp.recip_lat()
    eigval_origin = vasp.read_eigenvals()[0]
    origin_kpt = vasp.read_kpoints()
    kpts = np.dot(origin_kpt, rec_lat)
    kpt_path = np.zeros((np.shape(kpts)[0], 1))
    kpt_path[1:] = np.linalg.norm(kpts[1:] - kpts[:-1], axis=1).reshape(
        (-1, 1))
    kpt_path[1:] = np.cumsum(kpt_path[1:]).reshape((-1, 1))
    eigval_shape = np.shape(eigval_origin)
    eigval = np.zeros((eigval_shape[0], eigval_shape[1] * 2))
    for i in range(eigval_shape[1]):
        eigval[:, 2 * i:2 * i + 2] = eigval_origin[:, i, :]
    fermi, _, _ = vasp.read_dos()

    labels, high_kpts = read_kpoints(kpts_file)
    high_kpts = high_kpts @ rec_lat
    high_kpts_path = np.zeros((np.shape(high_kpts)[0], 1))
    high_kpts_path[1:] = np.linalg.norm(high_kpts[1:] - high_kpts[:-1],
                                        axis=1).reshape((-1, 1))
    high_kpts_path[1:] = np.cumsum(high_kpts_path[1:]).reshape((-1, 1))

    fig = go.Figure()
    for ii in range(eigval_shape[1]):
        # import pdb; pdb.set_trace()
        fig.add_trace(
            go.Scatter(x=kpt_path.reshape((len(kpt_path), )),
                       y=eigval[:, 2 * ii] - fermi,
                       mode='lines',
                       line=dict(color='blue', width=2)))

    annotations = []
    for i, label in enumerate(labels):
        annotations.append(
            go.Annotation(x=high_kpts_path[i][0],
                          y=-5,
                          xref="x1",
                          yref="y1",
                          text=label,
                          xanchor="center",
                          yanchor="top",
                          showarrow=False))
        fig.add_trace(
            go.Scatter(x=[high_kpts_path[i][0], high_kpts_path[i][0]],
                       y=[-5, 5],
                       mode='lines',
                       line=dict(color='black', width=1)))

    # In[4]:

    bandxaxis = go.XAxis(title="k-points",
                         range=[0, kpt_path[-1]],
                         showgrid=True,
                         showline=True,
                         ticks="",
                         showticklabels=False,
                         mirror=True,
                         linewidth=2)
    bandyaxis = go.YAxis(title="$E - E_f \quad / \quad \\text{eV}$",
                         range=[-5, 5],
                         showgrid=True,
                         showline=True,
                         zeroline=True,
                         mirror="ticks",
                         ticks="inside",
                         linewidth=2,
                         tickwidth=2,
                         zerolinewidth=2)

    bandlayout = go.Layout(title="Bands diagram",
                           xaxis=bandxaxis,
                           yaxis=bandyaxis,
                           annotations=go.Annotations(annotations))
    fig.update_layout(bandlayout)
    fig.update(layout_showlegend=False)
    # fig.show()

    # graphJSON = json.dumps(fig, cls=plotly.utils.PlotlyJSONEncoder)
    # In[5]:

    # Get HTML representation of plotly.js and this figure
    plot_div = pplot(fig, output_type='div', include_plotlyjs=False)
    # Get id of html div element that looks like
    # <div id="301d22ab-bfba-4621-8f5d-dc4fd855bb33" ... >
    res = re.search('<div id="([^"]*)"', plot_div)
    div_id = res.groups()[0]

    # Build JavaScript callback for handling clicks
    # and opening the URL in the trace's customdata
    js_callback = """
    <script>
    var plot_element = document.getElementById("{div_id}");
    plot_element.on('plotly_click', function(data){{
        console.log(data);
        var point = data.points[0];
        if (point) {{
            console.log(point.customdata);
            window.open(point.customdata);
        }}
    }})
    </script>
    """.format(div_id=div_id)

    # Build HTML string
    html_str = """
    <html>
    <body>
    {plot_div}
    {js_callback}
    <script type="text/javascript" async
          src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.1/MathJax.js?config=TeX-MML-AM_SVG">
        </script>
    </body>
    </html>
    """.format(plot_div=plot_div, js_callback=js_callback)
    return html_str, plot_div
tests['Tests 7-day'] = tests['Tests'].rolling(7).mean()
tests['Positives 7-day'] = tests['Positives'].rolling(7).mean()
tests['Positivity 7-day'] = tests['Positives 7-day'] / tests['Tests 7-day']
tests['Positivity'] = tests['Positives'] / tests['Tests']
tests['Positivity 7-day x10000'] = tests['Positivity 7-day'] * 10000
tests['Prevalence Index'] = np.sqrt(
    tests['Positives 7-day'] * tests['Positivity 7-day']) * 200

tests['Weekday'] = tests.Date.apply(lambda d: d.weekday())

tests.plot(
    x='Date',
    y=['Positives 7-day', 'Positivity 7-day x10000', 'Prevalence Index'])

fig = px.bar(tests, x='Date', y=['Positives', 'Tests'], barmode='group')
pplot(fig, include_plotlyjs='cdn', filename=plotpath + '\\temp.html')

fig = px.line(tests, x='Date', y='Positives', color='Weekday')
pplot(fig, include_plotlyjs='cdn', filename=plotpath + '\\temp.html')

#%% Plot tests by result date

covid.plotly_twolines(
    tests,
    'Positivity',
    'Positives',
    plotcolors=['violet', 'steelblue'],
    secondary_scale=1e4,
)

covid.plotly_casetest(
Beispiel #10
0
# filter counties shapefile to WI, convert to JSON format string, then decode 
# to dictionary with json.loads()
countiesJS = json.loads(countiesWI.to_json())

#%% Choropleth maps
if do_choropleth:
    fig = px.choropleth(countiesWI, 
                        geojson=countiesJS, 
                        locations=countiesWI.index, 
                        color=plotcol, 
                        color_continuous_scale=px.colors.sequential.Blues,
                        title='Cases by County',
                        projection='mercator')
    fig.update_geos(fitbounds='locations', visible=False)
    
    pplot(fig, filename='.\\plots\\plotly\\temp.html' )
    
    fig2 = px.choropleth(countiesWI, 
                        geojson=countiesJS, 
                        locations=countiesWI.index, 
                        color=plotcol2, 
                        color_continuous_scale=px.colors.sequential.Oranges,
                        range_color=hosp_scale,
                        title='Hospitalizations by County',
                        projection='mercator')
    fig2.update_geos(fitbounds='locations', visible=False)
    
    
    pplot(fig2, filename='.\\plots\\plotly\\temp2.html' )

Beispiel #11
0

# # take out 'variable=' part of the axis titles
# fig.for_each_annotation(
#     lambda a: a.update(
#         text=a.text.split("=")[-1],
#         font=dict(size=15),
#         )
# #     )

# fig.update_traces(textposition='outside')
fig.update_traces(marker_line_color='gray')

# other layout
# fig.update_layout(showlegend=False)

pplot(fig,
      filename='.\\docs\\assets\\plotly\\Vaccination-Region.html',
      include_plotlyjs='cdn',
      )

save_png = '.\\docs\\assets\\Vaccination-Region.png'
fig.write_image(
    save_png,
    width=700,
    height=550,
    engine='kaleido',
)
os.startfile(save_png)

usa = pd.read_csv(url_all)

# convert dates
state['Date'] = pd.to_datetime(state['date'], format='%Y%m%d')
usa['Date'] = pd.to_datetime(usa['date'], format='%Y%m%d')

#%% Plot cases against total tests
# remember total tests only fully populated oct 29... doesn't seem to have
# caused a discontinuity though

# Cases / Tests line plot
covid.plotly_casetest(
    sourcedata=state,
    case_col='positiveIncrease',
    test_col='totalTestResultsIncrease',
    date_col='Date',
    savefile='docs\\assets\\plotly\\Cases-Tests-WI-CTP.html',
)

#%% Plot WI vs. MN

compare = usa.loc[usa.state.apply(lambda s: s in ['WI', 'MN'])]

fig = px.line(compare, x='Date', y='totalTestResultsIncrease', color='state')

pplot(
    fig,
    filename='.\\docs\\assets\\plotly\\WI-MN.html',
    include_plotlyjs='cdn',
)