def test_two(): """Second charting test.""" expect = { 'layout': {'xaxis': {'title': 'x axis'}, 'yaxis': {'title': 'y label'}}, 'data': [ { 'y': np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]), 'x': np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]), 'line': {'color': 'red', 'width': 5, 'dash': 'dashdot'}, 'marker': dict(size=6), 'type': 'scatter', 'text': "", 'yaxis': 'y', 'mode': 'lines+markers', 'name': 'hello', } ], } x = np.arange(10) line0 = pw.line(y=x, label='hello', color='red', dash='dashdot', width=5) line0.xlabel = 'x axis' line0.ylabel = 'y label' line0.show(auto_open=False) line1 = pw.line(x, label='hello', color='red', dash='dashdot', width=5) line1.xlabel = 'x axis' line1.ylabel = 'y label' line1.show(auto_open=False) compare_figs(line0.dict, line1.dict) compare_figs(line0.dict, expect)
def upgraph(): data = cache.load('data') value = float(sigma.get()) data.pop(0) data.append(value * rng.randn() + data[-1]) mainplot.do_all(pw.line(data).to_json()) cache.save('data', data)
def mainregress(selection, alpha): if len(selection) < 2: return x = xdown.get()['value'] y = ydown.get()['value'] tabdata = [] mldatax = [] mldatay = [] species = iris.Species.unique() for i, p in enumerate(selection['points']): mldatax.append(p['x']) mldatay.append(p['y']) tabdata.append({ x: p['x'], y: p['y'], 'species': species[p['curve']] }) X = np.c_[mldatax, np.array(mldatax) ** 2] ridge = KernelRidge(alpha=alpha).fit(X, mldatay) xspace = np.linspace(min(mldatax)-1, max(mldatax)+1, 100) plot = pw.scatter(mldatax, mldatay, label='train', markersize=15) for i, df in iris.groupby('Species'): plot += pw.scatter(df[x], df[y], label=i) plot += pw.line(xspace, ridge.predict(np.c_[xspace, xspace**2]), label='model', mode='lines') plot.xlabel = x plot.ylabel = y linear.do_all(plot.dict) table1.do_data(pd.DataFrame(tabdata))
def test_two(): """Second charting test.""" expect = { 'layout': { 'xaxis': { 'title': 'x axis' }, 'yaxis': { 'title': 'y label' } }, 'data': [{ 'y': np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]), 'x': np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]), 'line': { 'color': 'red', 'width': 5, 'dash': 'dashdot' }, 'marker': dict(size=6), 'type': 'scatter', 'text': "", 'yaxis': 'y', 'mode': 'lines+markers', 'name': 'hello', }], } x = np.arange(10) line0 = pw.line(y=x, label='hello', color='red', dash='dashdot', width=5) line0.xlabel = 'x axis' line0.ylabel = 'y label' line0.show(auto_open=False) line1 = pw.line(x, label='hello', color='red', dash='dashdot', width=5) line1.xlabel = 'x axis' line1.ylabel = 'y label' line1.show(auto_open=False) compare_figs(line0.dict, line1.dict) compare_figs(line0.dict, expect)
def test_dataframe_lines(): """Test dataframe lines chart.""" columns = list('abc') x = np.arange(10) y = rng.randn(10, 3) df = pd.DataFrame(y, x, columns) p1 = df.plotly.line() p1.show(auto_open=False) p2 = pw.line(x, y, columns) p2.show(auto_open=False) compare_figs(p1.dict, p2.dict)
def test_dict(): """Test dict accessor works.""" js = pw.line(range(3)).dict expected = { 'layout': {}, 'data': [{ 'mode': 'lines+markers', 'marker': dict(size=6), 'text': "", 'y': [0, 1, 2], 'x': [0, 1, 2], 'yaxis': 'y', 'type': 'scatter', }], } compare_figs(js, expected)
def test_dict(): """Test dict accessor works.""" js = pw.line(range(3)).dict expected = { 'layout': {}, 'data': [ { 'mode': 'lines+markers', 'marker': dict(size=6), 'text': "", 'y': [0, 1, 2], 'x': [0, 1, 2], 'yaxis': 'y', 'type': 'scatter', } ], } compare_figs(js, expected)
def test_one(): """First charting test.""" x = np.arange(3) bars = pw.bar(x=x, y=[20, 14, 23], label='new york') bars2 = pw.bar(x=x, y=[12, 18, 29]) # , label='la') line = pw.line(x=x, y=[3, 8, 9], label='hello', color='red', dash='dashdot', width=5) plot = bars + bars2 + line # print(bars.data) plot.xlabel = 'x axis' plot.ylabel = 'y label' plot.stack() plot.show(auto_open=False) expect = { 'layout': {'barmode': 'stack', 'xaxis': {'title': 'x axis'}, 'yaxis': {'title': 'y label'}}, 'data': [ { 'y': np.array([20, 14, 23]), 'x': np.array([0, 1, 2]), 'type': 'bar', 'yaxis': 'y', 'name': 'new york', }, {'y': np.array([12, 18, 29]), 'x': np.array([0, 1, 2]), 'type': 'bar', 'yaxis': 'y'}, { 'y': np.array([3, 8, 9]), 'x': np.array([0, 1, 2]), 'line': {'color': 'red', 'width': 5, 'dash': 'dashdot'}, 'type': 'scatter', 'marker': dict(size=6), 'yaxis': 'y', 'text': "", 'mode': 'lines+markers', 'name': 'hello', }, ], } compare_figs(plot.dict, expect)
def mainregress(selection, alpha): if len(selection) < 2: return x = xdown.get()['value'] y = ydown.get()['value'] tabdata = [] mldatax = [] mldatay = [] species = iris.Species.unique() for i, p in enumerate(selection['points']): mldatax.append(p['x']) mldatay.append(p['y']) tabdata.append({ x: p['x'], y: p['y'], 'species': species[p['curveNumber']] }) X = np.c_[mldatax, np.array(mldatax)**2] ridge = KernelRidge(alpha=alpha).fit(X, mldatay) xspace = np.linspace(min(mldatax) - 1, max(mldatax) + 1, 100) plot = pw.scatter(mldatax, mldatay, label='train', markersize=15) for i, df in iris.groupby('Species'): plot += pw.scatter(df[x], df[y], label=i) plot += pw.line(xspace, ridge.predict(np.c_[xspace, xspace**2]), label='model', mode='lines') plot.xlabel(x) plot.ylabel(y) linear.do_all(plot.to_json()) table1.do_update(tabdata)
def listener(freq): freq = float(freq[0]) t = np.linspace(0, 10, 100) sine_plot.do_all(pw.line(t, np.sin(freq * t)).to_json())
def walk(): value = float(sigma.get()) data.pop(0) data.append(value * rng.randn() + data[-1]) mainplot.do_all(pw.line(data).to_json())
def twin_axes(): chart = pw.bar(range(20, 15, -1)) chart += pw.line(range(5), yaxis=2) chart.yaxis_right(2) chart.save('fig_twinx.html', **options)
def test_no_args(): """Test no args raises an error.""" with pytest.raises(AssertionError): pw.line() with pytest.raises(AssertionError): pw.bar()
def line(): pw.line(data).save('fig_line.html', **options)
def test_one(): """First charting test.""" x = np.arange(3) bars = pw.bar(x=x, y=[20, 14, 23], label='new york') bars2 = pw.bar(x=x, y=[12, 18, 29]) # , label='la') line = pw.line(x=x, y=[3, 8, 9], label='hello', color='red', dash='dashdot', width=5) plot = bars + bars2 + line # print(bars.data) plot.xlabel = 'x axis' plot.ylabel = 'y label' plot.stack() plot.show(auto_open=False) expect = { 'layout': { 'barmode': 'stack', 'xaxis': { 'title': 'x axis' }, 'yaxis': { 'title': 'y label' } }, 'data': [ { 'y': np.array([20, 14, 23]), 'x': np.array([0, 1, 2]), 'type': 'bar', 'yaxis': 'y', 'name': 'new york', }, { 'y': np.array([12, 18, 29]), 'x': np.array([0, 1, 2]), 'type': 'bar', 'yaxis': 'y' }, { 'y': np.array([3, 8, 9]), 'x': np.array([0, 1, 2]), 'line': { 'color': 'red', 'width': 5, 'dash': 'dashdot' }, 'type': 'scatter', 'marker': dict(size=6), 'yaxis': 'y', 'text': "", 'mode': 'lines+markers', 'name': 'hello', }, ], } compare_figs(plot.dict, expect)