Beispiel #1
0
def grid_deployment(f):
    scenarios.generate_victim_positions_traces()
    iteractions = 50
    list_solutions = list()
    list_fitness = list()
    for i in range(0, iteractions):
        sol, fit = algorithms.simple_grid()
        list_solutions.append(sol)
        list_fitness.append(fit)
    length = len(list_fitness)
    mean = sum(list_fitness) / length
    sum2 = sum(x * x for x in list_fitness)
    std = abs(sum2 / length - mean**2)**0.5

    f.write("Results \n")
    f.write("Max, Min, Mean, Std \n")
    f.write(
        str(max(list_fitness)) + "," + str(min(list_fitness)) + "," +
        str(mean) + "," + str(std))
    f.write("\n")

    global_max = max(list_fitness)
    index = miscelleneous.find_max(list_fitness)

    plots.print_drones_data(list_solutions[index], f)
    f.write("simple grid deployment")
    f.write("\n")
Beispiel #2
0
def only_local(option, f):

    knowledge = 0
    iterations_local = 50  # number of trials
    scenarios.generate_victim_positions_traces()
    scenarios.partial_knowledge_generation(knowledge)

    list_best_individuals = list()
    list_best_fitness = list()
    list_evolution_max = list()
    list_best_time = list()

    for i in range(0, iterations_local):
        list_drones = quality.init(
            global_variables.num_drones)  # random selection
        global_variables.partial = 1
        result_global = quality.evaluate(list_drones)
        global_variables.partial = 1  # we evaluate the hill climbing

        type_global = "Genetic Algorithm"
        if option == "Hill":
            type_local = "Hill Climbing"
            list_drones_climbing, records = local.hill_climbing(
                list_drones, result_global)
            list_best_individuals.append(list_drones_climbing)
            #list_best_time.append(best_time)
            q, = quality.evaluate(list_drones_climbing)
            list_best_fitness.append(q)
            list_evolution_max.append(records)

    length = len(list_best_fitness)
    mean = sum(list_best_fitness) / length
    sum2 = sum(x * x for x in list_best_fitness)
    std = abs(sum2 / length - mean**2)**0.5

    index = miscelleneous.find_max(list_best_fitness)

    f.write(type_local)
    f.write("\n")
    f.write("Results \n")
    f.write("Max, Min, Mean, Std \n")
    f.write(
        str(max(list_best_fitness)) + "," + str(min(list_best_fitness)) + "," +
        str(mean) + "," + str(std))
    f.write(str(list_best_fitness))
    plots.print_drones_data(list_best_individuals[index], f)
    plots.evolution_local(list_evolution_max[index], type_local)
    plots.positions(list_drones, list_best_individuals[index], type_global,
                    type_local)
Beispiel #3
0
def hill_climbing(lista_drones, global_max):
    """ Hill climbing algorithm. It receives the list of drones and the global maximum"""

    #global partial
    #global_variables.partial = 1 # we evaluate hill climbing for the initial deployment problem
    global_variables.partial = 0
    records = []
    records.append(global_max)
    first_max = global_max
    max_list = copy.deepcopy(lista_drones)  # watch up
    max_speed = 10  # meters/seconds
    simulation_time = 50000  # seconds
    #choose_directions(lista_drones, max_speed) # here we selec the type of movement
    selected = choose_directions_single(lista_drones, max_speed)
    current_quality = 0.0
    prueba = lista_drones
    best_time = 0

    print("---------- START CLIMBING OPTIMIZATION ----------")

    for i in range(0, simulation_time):
        update_drones_positions(lista_drones, 0)
        #update_drones_positions_single(lista_drones, selected)
        current_quality = quality.evaluate(lista_drones)
        if (current_quality <= global_max):
            #selected= step_back_single(lista_drones, selected, max_speed)
            step_back(lista_drones, max_speed)
            #print("go back")
        else:
            print("----------------previous quality %f" % global_max)
            global_max = current_quality
            #records.append(global_max)
            prueba = copy.deepcopy(lista_drones)
            print("----------------new quality %f" % global_max)
            plots.print_drones_data(lista_drones, 0)
            best_time = i  # we update the time at which we find the best solution so far
            print("-----------------------------------------------")
            print("-----------------------------------------------")

    # we print some information about how the positions are updated.
    print("quality before hill climbing %f" % first_max)
    print("List of victims covered %s" %
          quality.calc_victims_covered(max_list))
    print("total number of victims covered %d" %
          len(quality.calc_victims_covered(max_list)))
    print("-------INITIAL POSITIONS----------------------")
    plots.print_drones_data(max_list, 0)
    print("----------------------------------------------")
    print("----------------------------------------------")

    print("final quality hill climbing %f" % global_max)
    print("List of victims covered %s" % quality.calc_victims_covered(prueba))
    print("total number of victims covered %d" %
          len(quality.calc_victims_covered(prueba)))
    print("-------FINAL POSITIONS----------------------")
    plots.print_drones_data(prueba, 0)
    print("----------------------------------------------")
    print("----------------------------------------------")
    return prueba, records
Beispiel #4
0
def simulated_annealing(lista_drones, global_max, deviation):
    """ Simulated annealing algorithm. It receives the list of drones and the global maximum"""

    max_speed = 10  # meters/seconds
    simulation_time = 10000  # seconds
    global_variables.partial = 0
    temperature = float(deviation) / 0.0953

    records = []
    records_positions = []
    records_probability = []
    records_temperature = []
    records_aux = []

    global_max2, = global_max
    first_max = global_max
    max_list = copy.deepcopy(lista_drones)  # watch up
    records.append(global_max2)
    records_positions.append(max_list)
    choose_directions(lista_drones, max_speed)

    print("---------- START SIMULATED ANNEALING OPTIMIZATION ----------")
    for i in range(0, simulation_time):
        update_drones_positions(lista_drones)
        current_quality, = quality.evaluate(lista_drones)
        if current_quality <= global_max2 and current_quality > 0:
            probability = calculate_annealing_probability(
                temperature, current_quality, global_max2)
            print(probability)
            records_probability.append(probability)
            #records_aux.append(aux)
            if (probability >=
                    random.random()):  # we should avoid non valid solutions
                print("----------------accepting a WORSE solution--------")
                print("----------------previous quality %f" % global_max2)
                global_max2 = current_quality
                records.append(global_max2)
                prueba = copy.deepcopy(lista_drones)
                records_positions.append(prueba)
                print("----------------new quality %f" % global_max2)
                plots.print_drones_data(lista_drones, 0)
                print("-----------------------------------------------")
                print("-----------------------------------------------")
            else:
                step_back(lista_drones, max_speed)
        else:
            if (current_quality > 0):
                print("----------------accepting a BETTER solution--------")
                print("----------------previous quality %f" % global_max2)
                global_max2 = current_quality
                prueba = copy.deepcopy(lista_drones)
                records.append(global_max2)
                records_positions.append(prueba)
                print("----------------new quality %f" % global_max2)
                plots.print_drones_data(prueba, 0)
                print("-----------------------------------------------")
                print("-----------------------------------------------")

        temperature = update_annealing_temperature(temperature, deviation,
                                                   simulation_time)
        records_temperature.append(temperature)
        print("temperature %f" % temperature)

    #plots.evolution_local(records_aux, "probability")
    index = miscelleneous.find_max(records)

    print("quality before simulated annealing %f" % first_max)
    print("List of victims covered %s" %
          quality.calc_victims_covered(max_list))
    print("total number of victims covered %d" %
          len(quality.calc_victims_covered(max_list)))
    print("-------INITIAL POSITIONS----------------------")
    plots.print_drones_data(max_list, 0)
    print("----------------------------------------------")
    print("----------------------------------------------")

    print("final quality simulated annealing %f" % records[index])
    print("List of victims covered %s" %
          quality.calc_victims_covered(records_positions[index]))
    print("total number of victims covered %d" %
          len(quality.calc_victims_covered(records_positions[index])))
    print("-------FINAL POSITIONS----------------------")
    plots.print_drones_data(records_positions[index], 0)
    print("----------------------------------------------")
    print("----------------------------------------------")
    return records_positions[index], records
Beispiel #5
0
def tabu_search(lista_drones, global_max):
    """ Tabu search algorithm. It receives the list of drones and the global maximum"""

    #global partial
    global_variables.partial = 1
    records = []
    records.append(global_max)
    movement_list = []
    tabu_list = []  # store the positions that have already visited
    first_max = global_max  # we store the first maximum gloabal
    max_list = copy.deepcopy(
        lista_drones)  # make a copy of the original postions of the drones
    max_speed = 10  # meters/seconds
    simulation_time = 10000  # seconds
    choose_directions(lista_drones, max_speed)
    current_quality = 0.0
    repetido = 0

    print("---------- START TABU SEARCH OPTIMIZATION ----------")

    for i in range(0, simulation_time):
        update_drones_positions(lista_drones, 0)
        current_quality = quality.evaluate(lista_drones)
        current_positions = miscelleneous.get_positions(lista_drones)
        if current_positions in tabu_list:
            repetido = repetido + 1
            print("REPETIDOOOOOOOOOOOOOOOOOOOOOOOO")
        else:
            if (current_quality <= global_max):
                step_back(lista_drones, max_speed)
                #print("go back")
            else:
                print(current_positions)
                update_movements(lista_drones)
                movement_list.append(current_positions)
                print("----------------previous quality %f" % global_max)
                global_max = current_quality
                records.append(global_max)
                prueba = copy.deepcopy(lista_drones)
                print("----------------new quality %f" % global_max)
                plots.print_drones_data(lista_drones, 0)
                print("-----------------------------------------------")
                print("-----------------------------------------------")
        tabu_list.append(current_positions)

    print("repetido %d" % repetido)
    print("quality before tabu search %f" % first_max)
    print("List of victims covered %s" %
          quality.calc_victims_covered(max_list))
    print("total number of victims covered %d" %
          len(quality.calc_victims_covered(max_list)))
    print("-------INITIAL POSITIONS----------------------")
    plots.print_drones_data(max_list, 0)
    print("----------------------------------------------")
    print("----------------------------------------------")

    print("final quality tabu search %f" % global_max)
    print("List of victims covered %s" % quality.calc_victims_covered(prueba))
    print("total number of victims covered %d" %
          len(quality.calc_victims_covered(prueba)))
    print("-------FINAL POSITIONS----------------------")
    plots.print_drones_data(prueba, 0)
    print("----------------------------------------------")
    print("----------------------------------------------")
    plots.plot_movements(lista_drones)
    return prueba, records
Beispiel #6
0
def global_plus_local(f):
    """ This function runs the whole approach global + local search """
    iterations_genetic = 1  # iterations genetic algorithm
    knowledge = 0.8  # level of knowledge
    list_best_individuals = list(
    )  # to store the best individual of each genetic algorithm run
    list_best_fitness = list(
    )  # to store the best fitness of the best individual of each run
    list_generations = list()  # to store the generations
    list_drones_climbing = list()
    list_evolution_max = list()
    type_global = "Genetic"
    type_local = "Hill Climbing"

    f.write(type_global)
    f.write("\n")
    scenarios.generate_victim_positions_traces()
    scenarios.partial_knowledge_generation(knowledge)

    for i in range(0, iterations_genetic):
        individual, fitness, generation, evol_max = genetic.genetic_algorithm(
            "global_plus_local", i, knowledge)
        list_best_individuals.append(individual)
        list_best_fitness.append(fitness)
        list_generations.append(generation)
        list_evolution_max.append(evol_max)

    length = len(list_best_fitness)
    mean = sum(list_best_fitness) / length
    sum2 = sum(x * x for x in list_best_fitness)
    std = abs(sum2 / length - mean**2)**0.5

    f.write("Results \n")
    f.write("Max, Min, Mean, Std \n")
    f.write(
        str(max(list_best_fitness)) + "," + str(min(list_best_fitness)) + "," +
        str(mean) + "," + str(std))
    f.write("\n")

    global_max = max(list_best_fitness)
    index = miscelleneous.find_max(list_best_fitness)

    plots.print_drones_data(list_best_individuals[index], f)

    # LOCAL
    f.write(type_local)
    f.write("\n")
    #list_dr = quality.init_modified(list_best_individuals[index], global_variables.num_drones) # To simulate different number of drones for the initial deployment and for the adaptation to the real conditions
    #list_drones_climbing, records = local.hill_climbing(list_dr, list_best_individuals[index].fitness.values)
    list_drones_climbing, records = local.hill_climbing(
        list_best_individuals[index],
        list_best_individuals[index].fitness.values)
    f.write("Results \n")
    f.write(str(quality.evaluate(list_drones_climbing)))
    plots.print_drones_data(list_drones_climbing, f)
    plots.positions(list_best_individuals[index], list_drones_climbing,
                    type_global, type_local)
    plots.evolution_local(records, type_local)
    plots.evolution_global(list_evolution_max[index], type_global)

    print("######### FIRST DEPLOYMENT STATISTICS ################")
    print("  Min %s" % min(list_best_fitness))
    print("  Max %s" % max(list_best_fitness))
    print("  Avg %s" % mean)
    print("  Std %s" % std)
Beispiel #7
0
def only_global(f, type_algorithm, knowledge, fil, argument):
    #iterations_genetic = 120
    #iterations_genetic = 30 # how many times we run the algorithm
    iterations_genetic = 30
    iterations_pso = 1

    list_best_individuals = list()  # list of best individuals
    list_best_fitness = list()  # list of best fitnesses
    list_generations = list()  # list of generations
    list_evolution_max = list()
    list_covergence = list()

    list_best_individuals_f1 = list()  # list of best individuals
    list_best_fitness_f1 = list()  # list of best fitnesses
    list_generations_f1 = list()  # list of generations
    list_evolution_max_f1 = list()
    list_id_f1 = list()
    list_covergence_f1 = list()

    list_best_individuals_f2 = list()  # list of best individuals
    list_best_fitness_f2 = list()  # list of best fitnesses
    list_generations_f2 = list()  # list of generations
    list_evolution_max_f2 = list()
    list_id_f2 = list()
    list_covergence_f2 = list()

    list_best_individuals_f3 = list()  # list of best individuals
    list_best_fitness_f3 = list()  # list of best fitnesses
    list_generations_f3 = list()  # list of generations
    list_evolution_max_f3 = list()
    list_id_f3 = list()
    list_covergence_f3 = list()

    list_best_individuals_f4 = list()  # list of best individuals
    list_best_fitness_f4 = list()  # list of best fitnesses
    list_generations_f4 = list()  # list of generations
    list_evolution_max_f4 = list()
    list_id_f4 = list()
    list_covergence_f4 = list()

    results_f1 = list()
    results_f2 = list()
    results_f3 = list()
    results_f4 = list()
    res = list()

    # scenario generation
    ## basically, the victims are splitted into quadrants (4 :1.up-right,2.left-down,3.up-left,4.down-right)
    ## given the preferred number of ground nodes to display, the quadrants will appear
    scenarios.generate_victim_positions_traces()
    scenarios.partial_knowledge_generation(knowledge)

    if type_algorithm == "genetic":
        for i in range(0, iterations_genetic):
            #
            individual, fitness, generation, evol_max, convergence = genetic.genetic_algorithm(
                "genetic", i, knowledge)
            list_best_individuals.append(individual)
            list_best_fitness.append(fitness)
            list_generations.append(generation)
            list_evolution_max.append(evol_max)
            list_covergence.append(convergence)
            #print convergence

        print("list_covergence STEP ", list_covergence)
        stat = miscelleneous.statistics(list_best_fitness)
        stat_convergence = miscelleneous.statistics(list_covergence)
        data_results = pd.DataFrame(
            [stat], columns=["maximum", "minimum", "mean", "std", "index"])
        data_convergence = pd.DataFrame(
            [stat_convergence],
            columns=["maximum", "minimum", "mean", "std", "index"])
        data_results.to_csv(fil + "results.csv")
        data_convergence.to_csv(fil + "convergence.csv")
        f.write("The best solution of population 1\n")
        plots.print_drones_data(list_best_individuals[stat["index"]],
                                list_evolution_max[stat["index"]], f)

    if type_algorithm == "pso":
        for i in range(0, iterations_pso):
            individual, fitness, = pso.pso_algorithm()
            list_best_individuals.append(individual)
            list_best_fitness.append(fitness)

    if type_algorithm == "multi_population":

        for i in range(0, iterations_genetic):
            ## print the iterations
            print("Iteration genetic : ", i)
            if len(argument) > 1:  ## input : initial positions
                res = ga_multi_population.ga_multi_population(
                    argument, type_algorithm, i, knowledge)
            else:  ## classic search with no individuals to start with
                res = ga_multi_population.ga_multi_population(
                    None, type_algorithm, i, knowledge)
            ## 4 * iterations_genetic number of ga_multi_population : each node in the queue (ring schema)
            ## has THE SAME : iterations_genetic (30) results
            for i, r in enumerate(res):
                if i == 0:
                    results_f1.append(r)
                if i == 1:
                    results_f2.append(r)
                if i == 2:
                    results_f3.append(r)
                if i == 3:
                    results_f4.append(r)

    if type_algorithm == "multi_population":
        for r in results_f1:
            list_best_fitness_f1.append(r.best_fitness)
            list_best_individuals_f1.append(r.best)
            list_evolution_max_f1.append(r.best_evolution)
            list_id_f1.append(r.id)
            list_covergence_f1.append(r.convergence_generation)

        for r in results_f2:
            list_best_fitness_f2.append(r.best_fitness)
            list_best_individuals_f2.append(r.best)
            list_evolution_max_f2.append(r.best_evolution)
            list_id_f2.append(r.id)
            list_covergence_f2.append(r.convergence_generation)

        for r in results_f3:
            list_best_fitness_f3.append(r.best_fitness)
            list_best_individuals_f3.append(r.best)
            list_evolution_max_f3.append(r.best_evolution)
            list_id_f3.append(r.id)
            list_covergence_f3.append(r.convergence_generation)

        for r in results_f4:
            list_best_fitness_f4.append(r.best_fitness)
            list_best_individuals_f4.append(r.best)
            list_evolution_max_f4.append(r.best_evolution)
            list_id_f4.append(r.id)
            list_covergence_f4.append(r.convergence_generation)

        stat1 = miscelleneous.statistics(list_best_fitness_f1)
        stat2 = miscelleneous.statistics(list_best_fitness_f2)
        stat3 = miscelleneous.statistics(list_best_fitness_f3)
        stat4 = miscelleneous.statistics(list_best_fitness_f4)
        '''
		x=0
		for v in (list_covergence_f1,list_covergence_f2,list_covergence_f3,list_covergence_f4) :
			print(x," : ",v)
			x=x+1
		'''

        stat_convergence1 = miscelleneous.statistics(list_covergence_f1)
        stat_convergence2 = miscelleneous.statistics(list_covergence_f2)
        stat_convergence3 = miscelleneous.statistics(list_covergence_f3)
        stat_convergence4 = miscelleneous.statistics(list_covergence_f4)

        data_results = pd.DataFrame(
            [stat1, stat2, stat3, stat4],
            columns=["maximum", "minimum", "mean", "std", "index"])
        data_results.to_csv(fil + "results.csv")

        data_convergence = pd.DataFrame(
            [
                stat_convergence1, stat_convergence2, stat_convergence3,
                stat_convergence4
            ],
            columns=["maximum", "minimum", "mean", "std", "index"])
        data_convergence.to_csv(fil + "convergence.csv")

        f.write("The best solution of population 1\n")
        plots.print_drones_data(list_best_individuals_f1[stat1["index"]],
                                list_evolution_max_f1[stat1["index"]], f)
        f.write("The best solution of population 2\n")
        plots.print_drones_data(list_best_individuals_f2[stat2["index"]],
                                list_evolution_max_f2[stat2["index"]], f)
        f.write("The best solution of population 3\n")
        plots.print_drones_data(list_best_individuals_f3[stat3["index"]],
                                list_evolution_max_f3[stat3["index"]], f)
        f.write("The best solution of population 4\n")
        plots.print_drones_data(list_best_individuals_f4[stat4["index"]],
                                list_evolution_max_f4[stat4["index"]], f)

    if type_algorithm == "multi_objective":
        pareto_global = tools.ParetoFront()
        for i in range(0, iterations_genetic):
            pareto = ga_multi_objective.genetic_algorithm(
                "multi_objective", i, knowledge)
            pareto_global.update(pareto)
        plots.print_pareto(pareto_global, f)