Beispiel #1
0
    selection_tight=selection_tight,
    pandas_selection=pandas_selection,
    lumi=59700.,
    model='/'.join([
        env['BASE_DIR'], 'nn', 'trainings', training, 'net_model_weighted.h5'
    ]),
    transformation='/'.join([
        env['BASE_DIR'], 'nn', 'trainings', training,
        'input_tranformation_weighted.pck'
    ]),
    features='/'.join(
        [env['BASE_DIR'], 'nn', 'trainings', training, 'input_features.pck']),
    process_signals=True,  # switch off for control regions
    mini_signals=False,  # process only the signals that you'll plot
    plot_signals=True,
    blinded=False,
    datacards=[
        'hnl_m_12_lxy_lt_0p5', 'hnl_m_12_lxy_0p5_to_1p5',
        'hnl_m_12_lxy_1p5_to_4p0', 'hnl_m_12_lxy_mt_4p0'
    ],  # FIXME! improve this to accept wildcards / regex
    mc_subtraction=True,
    data_driven=True,
)

if __name__ == '__main__':
    plotter.plot()
    # save the plotter and all
    save_plotter_and_selections(plotter, selection, selection_mc,
                                selection_tight)
    pass
Beispiel #2
0
    model='/'.join([
        env['BASE_DIR'], 'nn', 'trainings', training, 'net_model_weighted.h5'
    ]),
    transformation='/'.join([
        env['BASE_DIR'], 'nn', 'trainings', training,
        'input_tranformation_weighted.pck'
    ]),
    features='/'.join(
        [env['BASE_DIR'], 'nn', 'trainings', training, 'input_features.pck']),
    process_signals=True,  # switch off for control regions
    mini_signals=False,  # process only the signals that you'll plot
    plot_signals=True,
    blinded=True,
    datacards=[
        'log_hnl_2d_disp', 'hnl_m_12', 'hnl_m_12_lxy_lt_0p5',
        'hnl_m_12_lxy_0p5_to_1p5', 'hnl_m_12_lxy_1p5_to_4p0',
        'hnl_m_12_lxy_mt_4p0', 'hnl_m_12_widebins_lxy_lt_0p5',
        'hnl_m_12_widebins_lxy_0p5_to_1p5_lin',
        'hnl_m_12_widebins_lxy_1p5_to_4p0', 'hnl_m_12_widebins_lxy_mt_4p0'
    ],  # FIXME! improve this to accept wildcards / regex
    mc_subtraction=True,
    data_driven=True,
)

if __name__ == '__main__':
    plotter.plot()
    # save the plotter and all
    save_plotter_and_selections(plotter, selection, selection_mc,
                                selection_tight, training)
    pass