SOLS = np.zeros([nn]) SOLU = np.zeros([nn, 2]) SOLC = np.zeros([nn, 3]) coords[:, 0] = nodes[:, 1] coords[:, 1] = nodes[:, 2] """ Computes the solution """ height = np.amax(coords[:, 1]) for i in range(0, nn): x = coords[i, 0] y = coords[i, 1] Y = -x X = height - y sigma = ela.boussipol(X, Y, P) sx, sy, txy = ela.boussicar(X, Y, P) ur, ut = ela.boussidispol(X, Y, P, E, nu, h) SOLS[i] = sigma SOLU[i, 0] = ur SOLU[i, 1] = ut # SOLC[i, 0] = sx SOLC[i, 1] = sy SOLC[i, 2] = txy """ Plot the solution """ plo.plot_SFIELD(SOLS, nodes, elements, 1, plt_type="contourf", levels=100) #plo.plot_disp(SOLU, nodes , elements , 2 , plt_type="contourf" , levels = 12 ) plo.plot_TFIELD(SOLC, nodes, elements, 3, plt_type="contourf", levels=24) #plo.viewmesh(nodes , elements , True)
var = geo.WedgeDifrac(L1, theta, c) nodes, elements, nn = geo.create_model(var, False) plo.viewmesh(nodes, elements, True) """ Define solution arrays """ coords = np.zeros([nn, 2]) SOL = np.zeros([nn, ninc]) coords[:, 0] = nodes[:, 1] coords[:, 1] = nodes[:, 2] """ Computes the solution """ for i in range(nn): x = coords[i, 0] y = coords[i, 1] u, tt = ela.IncomingWaveReflec(x, y, L1, theta) for j in range(ninc): SOL[i, j] = u[j] # # Plot the solution # plo.plot_SFIELD(SOL[:, 1000], nodes, elements, 1, plt_type="contourf", levels=12) #
init_printing() """ Creando los archivos .msh """ gui.ellipse_hlp() a , b , c , ietype , order, contornos =gui.ellipse() var = geo.Ellipse(a , b , c , ietype); geo.create_mesh(order , var ) nodes , elements , nn = geo.writefiles(ietype , var) """ Define solution arrays """ coords=np.zeros([nn,2]) SOL = np.zeros([nn]) coords[:,0]=nodes[:,1] coords[:,1]=nodes[:,2] """ Computes the solution """ for i in range(0,nn): x = coords[i,0] y = coords[i,1] alabeo =ela.ellipse(a, b , x , y) SOL[i] = alabeo """ (iii) Plot the solution using the appropriate function from plotter.py """ plo.plot_SFIELD(SOL, nodes , elements, 1 , plt_type ="contourf", levels = contornos ) #
P = -50.0 nu = 0.30 E = 1000.0 I = 42.67 L = 24.0 h = 8.0 for i in range(0, nn): x = coords[i, 0] y = coords[i, 1] u, v, exx, eyy, gammaxy = ela.beam(x, y, nu, P, E, I, L, h) U[i, 0] = u U[i, 1] = v STR[i, 0] = exx STR[i, 1] = eyy STR[i, 2] = gammaxy """ Plot the analytic displacement and strain solution """ plo.plot_VFIELD(U, nodes, elements, 1) plo.plot_TFIELD(STR, nodes, elements, 1) """ Plot the displacement-based displacement gradient """ DuDx, DuDy = plo.plot_GRAD(U[:, 0], nodes, elements, 1) DvDx, DvDy = plo.plot_GRAD(U[:, 1], nodes, elements, 1) """ Computes and plots the displacement-based shear strain. """ str = 0.5 * (DuDy + DvDx) plo.plot_SFIELD(str, nodes, elements, 1) #