Beispiel #1
0
def main():
    fig, ax = plt.subplots(2, 2, figsize=(10, 10))
    fig.tight_layout()

    data = -25 * make_test_data('hills',
                                noise_factor=0.025)  # secretly swapped :-)
    #data = -25 * make_test_data('circles', noise_factor=0.025) # secretly swapped :-)
    terrain = data
    assert terrain.shape == data.shape, "{} != {}".format(
        terrain.shape, data.shape)

    if '--bw' in sys.argv:
        # Only intensities
        blend_function = no_blending
        cmap = INTENSITY_CMAP

        # Don't auto scale the intensities, it gives the wrong impression
        norm = mpl.colors.Normalize(vmin=0.0, vmax=1.0)
    else:
        blend_function = rgb_blending
        cmap = plt.cm.get_cmap('gist_earth')
        norm = mpl.colors.Normalize()

    azimuths = [45, 135, 270]  # North-East, North-West and South.
    elevations = [60] * len(azimuths)

    # Draw shading by separate light sources
    for idx, (azim, elev) in enumerate(zip(azimuths, elevations)):
        row = idx // 2
        col = idx % 2
        draw(ax[row, col],
             cmap=cmap,
             norm=norm,
             title='azim = {}, elev = {}'.format(azim, elev),
             image_data=hill_shade(data,
                                   terrain,
                                   blend_function=blend_function,
                                   ambient_weight=1,
                                   lamp_weight=5,
                                   cmap=cmap,
                                   norm=norm,
                                   azimuth=azim,
                                   elevation=elev))

    # Draw shading by all light sources combined
    draw(ax[1, 1],
         cmap=cmap,
         norm=norm,
         title='combined'.format(azim, elev),
         image_data=hill_shade(data,
                               terrain,
                               blend_function=blend_function,
                               ambient_weight=1,
                               lamp_weight=[5, 5, 5],
                               cmap=cmap,
                               norm=norm,
                               azimuth=azimuths,
                               elevation=elevations))

    plt.show()
    def plot(self, plotdir, subset_by_gene=False, cyst_positions=None, tryp_positions=None):
        print '  plotting parameters'
        start = time.time()
        utils.prep_dir(plotdir + '/plots')  #, multilings=('*.csv', '*.svg'))
        for column in self.counts:
            if column == 'all':
                continue
            values, gene_values = {}, {}
            if len(self.counts[column]) == 0:
                print 'ERROR no counts in %s' % column
                assert False
            for index, count in self.counts[column].iteritems():
                gene = None
                if subset_by_gene and ('_del' in column or column == 'vd_insertion' or column == 'dj_insertion'):  # option to subset deletion and (real) insertion plots by gene
                    if '_del' in column:
                        region = column[0]
                    else:
                        region = column[1]
                    assert region in utils.regions
                    assert 'IGH' + region.upper() in index[1]  # NOTE this is hackey, but it works find now and will fail obviously
                    gene = index[1]                            #   if I ever change the correlations to be incompatible. so screw it
                    if gene not in gene_values:
                        gene_values[gene] = {}

                column_val = index[0]
                if gene is not None:
                    if column_val not in gene_values[gene]:
                        gene_values[gene][column_val] = 0.0
                    gene_values[gene][column_val] += count
                if column_val not in values:
                    values[column_val] = 0.0
                values[column_val] += count

                try:  # figure out whether this is an integer or string (only used outside this loop when we make the plots)
                    int(column_val)
                    var_type = 'int'
                except:
                    var_type = 'string'

            if subset_by_gene and ('_del' in column or column == 'vd_insertion' or column == 'dj_insertion'):  # option to subset deletion and (real) insertion plots by gene
                thisplotdir = plotdir + '/' + column
                utils.prep_dir(thisplotdir + '/plots', multilings=['*.csv', '*.svg'])
                for gene in gene_values:
                    plotname = utils.sanitize_name(gene) + '-' + column
                    hist = plotting.make_hist_from_dict_of_counts(gene_values[gene], var_type, plotname, sort=True)
                    plotting.draw(hist, var_type, plotname=plotname, plotdir=thisplotdir, errors=True, write_csv=True)
                check_call(['./bin/makeHtml', thisplotdir, '3', 'null', 'svg'])
                check_call(['./bin/permissify-www', thisplotdir])  # NOTE this should really permissify starting a few directories higher up

            plotname = column
            hist = plotting.make_hist_from_dict_of_counts(values, var_type, plotname, sort=True)
            plotting.draw(hist, var_type, plotname=plotname, plotdir=plotdir, errors=True, write_csv=True)

        self.mutefreqer.plot(plotdir, cyst_positions, tryp_positions)  #, mean_freq_outfname=base_outdir + '/REGION-mean-mute-freqs.csv')  # REGION is replace by each region in the three output files

        if has_root:
            check_call(['./bin/makeHtml', plotdir, '3', 'null', 'svg'])
            check_call(['./bin/permissify-www', plotdir])  # NOTE this should really permissify starting a few directories higher up

        print '    parameter plot time: %.3f' % (time.time()-start)
Beispiel #3
0
    def plot(self, plotdir, subset_by_gene=False, cyst_positions=None, tryp_positions=None):
        print '  plotting parameters'
        # start = time.time()
        utils.prep_dir(plotdir + '/plots')  #, multilings=('*.csv', '*.svg'))
        for column in self.counts:
            if column == 'all':
                continue
            values, gene_values = {}, {}
            if len(self.counts[column]) == 0:
                print 'ERROR no counts in %s' % column
                assert False
            for index, count in self.counts[column].iteritems():
                gene = None
                if subset_by_gene and ('_del' in column or column == 'vd_insertion' or column == 'dj_insertion'):  # option to subset deletion and (real) insertion plots by gene
                    if '_del' in column:
                        region = column[0]
                    else:
                        region = column[1]
                    assert region in utils.regions
                    assert 'IGH' + region.upper() in index[1]  # NOTE this is hackey, but it works find now and will fail obviously
                    gene = index[1]                            #   if I ever change the correlations to be incompatible. so screw it
                    if gene not in gene_values:
                        gene_values[gene] = {}

                column_val = index[0]
                if gene is not None:
                    if column_val not in gene_values[gene]:
                        gene_values[gene][column_val] = 0.0
                    gene_values[gene][column_val] += count
                if column_val not in values:
                    values[column_val] = 0.0
                values[column_val] += count

                try:  # figure out whether this is an integer or string (only used outside this loop when we make the plots)
                    int(column_val)
                    var_type = 'int'
                except:
                    var_type = 'string'

            if subset_by_gene and ('_del' in column or column == 'vd_insertion' or column == 'dj_insertion'):  # option to subset deletion and (real) insertion plots by gene
                thisplotdir = plotdir + '/' + column
                utils.prep_dir(thisplotdir + '/plots', multilings=['*.csv', '*.svg'])
                for gene in gene_values:
                    plotname = utils.sanitize_name(gene) + '-' + column
                    hist = plotting.make_hist_from_dict_of_counts(gene_values[gene], var_type, plotname, sort=True)
                    plotting.draw(hist, var_type, plotname=plotname, plotdir=thisplotdir, errors=True, write_csv=True)
                check_call(['./bin/makeHtml', thisplotdir, '3', 'null', 'svg'])
                check_call(['./bin/permissify-www', thisplotdir])  # NOTE this should really permissify starting a few directories higher up

            plotname = column
            hist = plotting.make_hist_from_dict_of_counts(values, var_type, plotname, sort=True)
            plotting.draw(hist, var_type, plotname=plotname, plotdir=plotdir, errors=True, write_csv=True)

        self.mutefreqer.plot(plotdir, cyst_positions, tryp_positions)  #, mean_freq_outfname=base_outdir + '/REGION-mean-mute-freqs.csv')  # REGION is replace by each region in the three output files

        if has_root:
            check_call(['./bin/makeHtml', plotdir, '3', 'null', 'svg'])
            check_call(['./bin/permissify-www', plotdir])  # NOTE this should really permissify starting a few directories higher up
def main():
    fig, ax = plt.subplots(2, 2, figsize=(10, 10))
    fig.tight_layout()

    data = -25 * make_test_data('hills', noise_factor=0.025) # secretly swapped :-)
    #data = -25 * make_test_data('circles', noise_factor=0.025) # secretly swapped :-)
    terrain = data
    assert terrain.shape == data.shape, "{} != {}".format(terrain.shape, data.shape)
    
    if '--bw' in sys.argv:
        # Only intensities
        blend_function = no_blending
        cmap=INTENSITY_CMAP
        
        # Don't auto scale the intensities, it gives the wrong impression
        norm = mpl.colors.Normalize(vmin=0.0, vmax=1.0)
    else:
        blend_function = rgb_blending
        cmap = plt.cm.get_cmap('gist_earth')
        norm = mpl.colors.Normalize()
    
    azimuths = [45, 135, 270] # North-East, North-West and South.
    elevations = [60] * len(azimuths)
    
    # Draw shading by separate light sources
    for idx, (azim, elev) in enumerate(zip(azimuths, elevations)):
        row = idx // 2
        col = idx % 2
        draw(ax[row, col], cmap=cmap, norm=norm, 
             title='azim = {}, elev = {}'.format(azim, elev), 
             image_data = hill_shade(data, terrain, blend_function=blend_function, 
                                     ambient_weight = 1, lamp_weight = 5,
                                     cmap=cmap, norm=norm,  
                                     azimuth=azim, elevation=elev))
    
    # Draw shading by all light sources combined 
    draw(ax[1, 1], cmap=cmap, norm=norm, 
         title='combined'.format(azim, elev), 
         image_data = hill_shade(data, terrain, blend_function=blend_function, 
                                 ambient_weight = 1, lamp_weight = [5, 5, 5],
                                 cmap=cmap, norm=norm,  
                                 azimuth=azimuths, elevation=elevations))

    plt.show()
Beispiel #5
0
def main():
    fig, ax = plt.subplots(2, 2, figsize=(10, 10))
    fig.tight_layout()

    data = make_test_data('circles')
    terrain = 10 * make_test_data('hills', noise_factor=0.05)
    assert terrain.shape == data.shape, "{} != {}".format(terrain.shape, data.shape)
    print("min data: {}".format(np.min(data)))
    print("max data: {}".format(np.max(data)))

    # Some color maps to try.
    #cmap = plt.cm.get_cmap('bwr')
    #cmap = plt.cm.get_cmap('CMRmap')
    #cmap = plt.cm.get_cmap('rainbow')
    #cmap = plt.cm.get_cmap('cool_r')
    cmap = plt.cm.get_cmap('Set1')
    
    # Optionally set the over and under flow colors.
    #cmap.set_bad('yellow')
    #cmap.set_over('cyan')
    #cmap.set_under('magenta')
         
    if ['--autoscale'] in sys.argv:
        print ("Auto scale legend")
        dnorm = mpl.colors.Normalize()
    else:
        dmin = 0
        dmax = 10
        print ("clip legend at ({}, {})".format(dmin, dmax))
        dnorm = mpl.colors.Normalize(vmin=dmin, vmax=dmax)
        
    # Don't auto scale the intensities, it gives the wrong impression
    inorm = mpl.colors.Normalize(vmin=0.0, vmax=1.0)
            
    azimuth = DEF_AZIMUTH 
    elevation = DEF_ELEVATION

    draw(ax[0, 0], cmap=plt.cm.gist_earth, title='Terrain height', 
         image_data = terrain)

    draw(ax[0, 1], cmap=INTENSITY_CMAP, norm=inorm, 
         title='Shaded terrain (azim = {}, elev = {})'.format(azimuth, elevation), 
         image_data = hill_shade(terrain, blend_function=no_blending, 
                                 azimuth=azimuth, elevation=elevation)) 

    draw(ax[1, 0], cmap=cmap, norm=dnorm, title='Surface properties', 
         image_data = data)
    
    draw(ax[1, 1], cmap=cmap, norm=dnorm, title='Shaded terrain with surface properties', 
         image_data = hill_shade(data, terrain=terrain,
                                 azimuth=azimuth, elevation=elevation, 
                                 cmap=cmap, norm=dnorm))
    plt.show()
 def plot(self, plotdir):
     utils.prep_dir(plotdir + '/plots', wildling=None, multilings=['*.csv', '*.svg', '*.root'])
     for column in self.values:
         if self.only_correct_gene_fractions and column not in bool_columns:
             continue
         if column in bool_columns:
             right = self.values[column]['right']
             wrong = self.values[column]['wrong']
             errs = fraction_uncertainty.err(right, right+wrong)
             print '  %s\n    correct up to allele: %4d / %-4d = %4.4f (-%.3f, +%.3f)' % (column, right, right+wrong, float(right) / (right + wrong), errs[0], errs[1])
             hist = plotting.make_bool_hist(right, wrong, self.name + '-' + column)
             plotting.draw(hist, 'bool', plotname=column, plotdir=plotdir, write_csv=True)
         else:
             # TODO this is dumb... I should make the integer-valued ones histograms as well
             hist = plotting.make_hist_from_dict_of_counts(self.values[column], 'int', self.name + '-' + column, normalize=True)
             log = ''
             if column.find('hamming_to_true_naive') >= 0:
                 hist.GetXaxis().SetTitle('hamming distance')
             else:
                 hist.GetXaxis().SetTitle('inferred - true')
             plotting.draw(hist, 'int', plotname=column, plotdir=plotdir, write_csv=True, log=log)
     for column in self.hists:
         hist = plotting.make_hist_from_my_hist_class(self.hists[column], column)
         plotting.draw(hist, 'float', plotname=column, plotdir=plotdir, write_csv=True, log=log)
     
     check_call(['./bin/makeHtml', plotdir, '3', 'null', 'svg'])
     check_call(['./bin/permissify-www', plotdir])  # NOTE this should really permissify starting a few directories higher up
def main():

    fig, ax = plt.subplots(3, 4, figsize=(15, 10))
    fig.tight_layout()
    
    #terrain = make_test_data('circles', noise_factor=0.0)
    terrain = make_test_data('hills', noise_factor=0.1)

    # Scale terrain. 
    terrain *= 5

    # Don't auto scale the intensities, it gives the wrong impression
    inorm = mpl.colors.Normalize(vmin=0.0, vmax=1.0)

    # Draw the terrain as color map
    draw(ax[0, 0], cmap=plt.cm.gist_earth, title='No shading', ticks=True,  
         image_data = terrain)
    
    # Draw empty space
    ax[1, 0].set_axis_off()
    ax[2, 0].set_axis_off()
    
    cmap = INTENSITY_CMAP
    azim0_is_east = True # If true, azimuth 0 will correspond to east just as in our implementation
    azimuths = [45, 90, 135]
    #elev = 50
    
    # At low elevation you will see still noise bumps in places that are completely in the shadows.
    # This may seem nice but it is incorrect.
    elev = 15 
    
    for idx, azim in enumerate(azimuths):
        col = idx + 1
        
        draw(ax[0, col], cmap=cmap, norm=inorm, 
             title="MPL normalized (azim = {}, elev = {})".format(azim, elev),  
             image_data = mpl_surface_intensity(terrain, azimuth=azim, elevation=elev, 
                                               azim0_is_east=azim0_is_east, normalize=True))
           
        draw(ax[1, col], cmap=cmap, norm=inorm, 
             title="MPL (azim = {}, elev = {})".format(azim, elev), 
             image_data = mpl_surface_intensity(terrain, azimuth=azim, elevation=elev, 
                                               azim0_is_east=azim0_is_east, normalize=False))   
        
        draw(ax[2, col], cmap=cmap, norm=inorm, 
             title="Diffuse (azim = {}, elev = {})".format(azim, elev), 
             image_data = relative_surface_intensity(terrain, azimuth=azim, elevation=elev))

    plt.show()
Beispiel #8
0
    def plot(self, base_plotdir, cyst_positions=None, tryp_positions=None):
        if not self.finalized:
            self.finalize()

        plotdir = base_plotdir + '/mute-freqs'
        utils.prep_dir(plotdir + '/plots', multilings=('*.csv', '*.svg'))
        for region in utils.regions:
            utils.prep_dir(plotdir + '/' + region + '/plots', multilings=('*.csv', '*.svg'))
            utils.prep_dir(plotdir + '/' + region + '-per-base/plots', multilings=('*.csv', '*.png'))

        for gene in self.counts:
            counts, plotting_info = self.counts[gene], self.plotting_info[gene]
            sorted_positions = sorted(counts)
            hist = TH1D('hist_' + utils.sanitize_name(gene), '',
                        sorted_positions[-1] - sorted_positions[0] + 1,
                        sorted_positions[0] - 0.5, sorted_positions[-1] + 0.5)
            for position in sorted_positions:
                hist.SetBinContent(hist.FindBin(position), counts[position]['freq'])
                hi_diff = abs(counts[position]['freq'] - counts[position]['freq_hi_err'])
                lo_diff = abs(counts[position]['freq'] - counts[position]['freq_lo_err'])
                err = 0.5*(hi_diff + lo_diff)
                hist.SetBinError(hist.FindBin(position), err)
            plotfname = plotdir + '/' + utils.get_region(gene) + '/plots/' + utils.sanitize_name(gene) + '.svg'
            xline = None
            if utils.get_region(gene) == 'v' and cyst_positions is not None:
                xline = cyst_positions[gene]['cysteine-position']
            elif utils.get_region(gene) == 'j' and tryp_positions is not None:
                xline = int(tryp_positions[gene])
            plotting.draw(hist, 'int', plotdir=plotdir + '/' + utils.get_region(gene), plotname=utils.sanitize_name(gene), errors=True, write_csv=True, xline=xline, draw_str='e')  #, cwidth=4000, cheight=1000)
            paramutils.make_mutefreq_plot(plotdir + '/' + utils.get_region(gene) + '-per-base', utils.sanitize_name(gene), plotting_info)

        # for region in utils.regions:
        #     utils.prep_dir(plotdir + '/' + region + '/tmp/plots', multilings=('*.csv', '*.svg'))
        # for gene in self.tmpcounts:
        #     for position in self.tmpcounts[gene]:
        #         roothist = plotting.make_hist_from_my_hist_class(self.tmpcounts[gene][position]['muted'], gene + '_' + str(position))
        #         plotting.draw(roothist, 'int', plotdir=plotdir + '/' + utils.get_region(gene) + '/tmp', plotname=utils.sanitize_name(gene) + '_' + str(position), errors=True, write_csv=True)  #, cwidth=4000, cheight=1000)

        # make mean mute freq hists
        hist = plotting.make_hist_from_my_hist_class(self.mean_rates['all'], 'all-mean-freq')
        plotting.draw(hist, 'float', plotname='all-mean-freq', plotdir=plotdir, stats='mean', bounds=(0.0, 0.4), write_csv=True)
        for region in utils.regions:
            hist = plotting.make_hist_from_my_hist_class(self.mean_rates[region], region+'-mean-freq')
            plotting.draw(hist, 'float', plotname=region+'-mean-freq', plotdir=plotdir, stats='mean', bounds=(0.0, 0.4), write_csv=True)
        check_call(['./bin/makeHtml', plotdir, '3', 'null', 'svg'])

        # then write html file and fix permissiions
        for region in utils.regions:
            check_call(['./bin/makeHtml', plotdir + '/' + region, '1', 'null', 'svg'])
            check_call(['./bin/makeHtml', plotdir + '/' + region + '-per-base', '1', 'null', 'png'])
        check_call(['./bin/permissify-www', plotdir])  # NOTE this should really permissify starting a few directories higher up
 def plot(self):
     for column in self.values:
         if column in bool_columns:
             right = self.values[column]['right']
             wrong = self.values[column]['wrong']
             print '  %s\n    correct up to allele: %4d / %-4d = %4.2f' % (column, right, right+wrong, float(right) / (right + wrong))
             hist = plotting.make_bool_hist(right, wrong, self.name + '-' + column)
             plotting.draw(hist, 'bool', plotname=column, plotdir=self.plotdir, write_csv=True)
         else:
             hist = plotting.make_hist_from_dict_of_counts(self.values[column], 'int', self.name + '-' + column, normalize=True)
             log = ''
             if column.find('hamming_to_true_naive') >= 0:
                 hist.GetXaxis().SetTitle('hamming distance')
             else:
                 hist.GetXaxis().SetTitle('inferred - true')
             plotting.draw(hist, 'int', plotname=column, plotdir=self.plotdir, write_csv=True, log=log)
     for column in self.hists:
         hist = plotting.make_hist_from_my_hist_class(self.hists[column], 'mute_freqs')
         plotting.draw(hist, 'float', plotname=column, plotdir=self.plotdir, write_csv=True, log=log)
     
     check_call(['./bin/makeHtml', self.plotdir, '3', 'null', 'svg'])
     check_call(['./bin/permissify-www', self.plotdir])  # NOTE this should really permissify starting a few directories higher up
def main():

    fig, ax = plt.subplots(3, 2, figsize=(7, 10))
    fig.tight_layout()    

    if 1:
        # Same terrain and data.
        data = make_test_data('circles', noise_factor=0.05) * 2 - 7
        terrain = data
    else:
        # Different terrain and data. Matplotlib hill shading can only show the data.
        data = make_test_data('hills') * -1
        terrain = make_test_data('circles', noise_factor=0.05) * 2
        
    assert terrain.shape == data.shape, "{} != {}".format(terrain.shape, data.shape)
    print("data range: {} {}".format(np.min(data), np.max(data)))
    
    if len(sys.argv) > 1:
        cmap_name = sys.argv[1]
    else:
        #cmap_name = 'copper' # from http://matplotlib.org/examples/pylab_examples/shading_example.html?highlight=codex%20shade
        #cmap_name = 'gist_earth' # works reasonably fine with all of them
        cmap_name = 'bwr'        # shows that mpl & pegtop don't work when there is no increasing intensity
        #cmap_name = 'cubehelix'  # shows that HSV blending does not work were color is black
        #cmap_name = 'rainbow'    # shows that mpl & pegtop don't work when there is no increasing intensity
        #cmap_name = 'Paired_r'   # is nice to inspect when the data is different from the terrain
        
    print ("Using colormap: {!r}".format(cmap_name))
    cmap = plt.cm.get_cmap(cmap_name)
    cmap.set_bad('cyan')
    cmap.set_over('cyan')
    cmap.set_under('cyan')
    
    abs_max = np.max(np.abs(data)) # force color bar to be symmetrical. 
    norm = mpl.colors.Normalize(vmin=-abs_max, vmax=abs_max)
    #norm = mpl.colors.Normalize(vmin=-2, vmax=3)
    
    draw(ax[0, 0], cmap=cmap, norm=norm, title='No shading', 
         image_data = data)

    draw(ax[0, 1], cmap=plt.cm.gray, title='Matplotlib intensity', 
         image_data = mpl_surface_intensity(terrain))

    ls = LightSource(azdeg=DEF_AZIMUTH, altdeg=DEF_ELEVATION)
    draw(ax[1, 0], cmap=cmap, norm=norm, title='Matplotlib hill shading', 
         image_data = ls.shade(data, cmap=cmap, norm=norm))
    
    draw(ax[1, 1], cmap=cmap, norm=norm, title='Pegtop blending', 
         image_data = mpl_hill_shade(data, terrain=terrain,  
                                     cmap=cmap, norm=norm, blend_function=pegtop_blending))
    
    draw(ax[2, 0], cmap=cmap, norm=norm, title='RGB blending', 
         image_data = mpl_hill_shade(data, terrain=terrain, 
                                     cmap=cmap, norm=norm, blend_function=rgb_blending))    
    
    draw(ax[2, 1], cmap=cmap, norm=norm, title='HSV blending', 
         image_data = mpl_hill_shade(data, terrain=terrain, 
                                     cmap=cmap, norm=norm, blend_function=hsv_blending))    

    plt.show()
Beispiel #11
0
def main():

    fig, ax = plt.subplots(3, 2, figsize=(7, 10))
    fig.tight_layout()

    if 1:
        # Same terrain and data.
        data = make_test_data('circles', noise_factor=0.05) * 2 - 7
        terrain = data
    else:
        # Different terrain and data. Matplotlib hill shading can only show the data.
        data = make_test_data('hills') * -1
        terrain = make_test_data('circles', noise_factor=0.05) * 2

    assert terrain.shape == data.shape, "{} != {}".format(
        terrain.shape, data.shape)
    print("data range: {} {}".format(np.min(data), np.max(data)))

    if len(sys.argv) > 1:
        cmap_name = sys.argv[1]
    else:
        #cmap_name = 'copper' # from http://matplotlib.org/examples/pylab_examples/shading_example.html?highlight=codex%20shade
        #cmap_name = 'gist_earth' # works reasonably fine with all of them
        cmap_name = 'bwr'  # shows that mpl & pegtop don't work when there is no increasing intensity
        #cmap_name = 'cubehelix'  # shows that HSV blending does not work were color is black
        #cmap_name = 'rainbow'    # shows that mpl & pegtop don't work when there is no increasing intensity
        #cmap_name = 'Paired_r'   # is nice to inspect when the data is different from the terrain

    print("Using colormap: {!r}".format(cmap_name))
    cmap = plt.cm.get_cmap(cmap_name)
    cmap.set_bad('cyan')
    cmap.set_over('cyan')
    cmap.set_under('cyan')

    abs_max = np.max(np.abs(data))  # force color bar to be symmetrical.
    norm = mpl.colors.Normalize(vmin=-abs_max, vmax=abs_max)
    #norm = mpl.colors.Normalize(vmin=-2, vmax=3)

    draw(ax[0, 0], cmap=cmap, norm=norm, title='No shading', image_data=data)

    draw(ax[0, 1],
         cmap=plt.cm.gray,
         title='Matplotlib intensity',
         image_data=mpl_surface_intensity(terrain))

    ls = LightSource(azdeg=DEF_AZIMUTH, altdeg=DEF_ELEVATION)
    draw(ax[1, 0],
         cmap=cmap,
         norm=norm,
         title='Matplotlib hill shading',
         image_data=ls.shade(data, cmap=cmap, norm=norm))

    draw(ax[1, 1],
         cmap=cmap,
         norm=norm,
         title='Pegtop blending',
         image_data=mpl_hill_shade(data,
                                   terrain=terrain,
                                   cmap=cmap,
                                   norm=norm,
                                   blend_function=pegtop_blending))

    draw(ax[2, 0],
         cmap=cmap,
         norm=norm,
         title='RGB blending',
         image_data=mpl_hill_shade(data,
                                   terrain=terrain,
                                   cmap=cmap,
                                   norm=norm,
                                   blend_function=rgb_blending))

    draw(ax[2, 1],
         cmap=cmap,
         norm=norm,
         title='HSV blending',
         image_data=mpl_hill_shade(data,
                                   terrain=terrain,
                                   cmap=cmap,
                                   norm=norm,
                                   blend_function=hsv_blending))

    plt.show()
Beispiel #12
0
    def cluster(self, input_scores=None, infname=None, debug=False, reco_info=None, outfile=None, plotdir=''):
        if infname is None:
            assert input_scores is not None
        else:
            assert input_scores is None  # should only specify <input_scores> *or* <infname>
            input_scores = []
            with opener('r')(infname) as infile:
                reader = csv.DictReader(infile)
                for line in reader:
                    input_scores.append(line)
        sorted_lines = sorted(input_scores, key=lambda k: float(k['score']))
        for line in sorted_lines:
            a_name = line['id_a']
            b_name = line['id_b']
            score = float(line['score'])
            from_same_event = -1 if (reco_info == None or a_name not in reco_info or b_name not in reco_info) else reco_info[a_name]['reco_id'] == reco_info[b_name]['reco_id']
            dbg_str_list = ['%22s %22s   %8.3f   %d' % (a_name, b_name, score, from_same_event), ]
            self.incorporate_into_clusters(a_name, b_name, score, dbg_str_list)
            self.pairscores[(utils.get_key((a_name, b_name)))] = score
            self.plotscores['all'].append(score)
            if reco_info != None:
                if from_same_event:
                    self.plotscores['same'].append(score)
                else:
                    self.plotscores['diff'].append(score)
            # if reco_info != None and reco_info[a_name]['reco_id'] == reco_info[b_name]['reco_id']:
            #     for query,score in {a_name:score, b_name:score}.iteritems():
            #         if query not in self.nearest_true_mate:
            #             self.nearest_true_mate[query] = score
            #         elif self.greater_than and score > self.nearest_true_mate[query]:
            #             self.nearest_true_mate[query] = score
            #         elif not self.greater_than and score < self.nearest_true_mate[query]:
            #             self.nearest_true_mate[query] = score
            if debug:
                outstr = ''.join(dbg_str_list)
                if outfile == None:
                    print outstr
                else:
                    outfile.write(outstr + '\n')

        if plotdir != '':
            utils.prep_dir(plotdir + '/plots', '*.svg')
            hists = {}
            for htype in ['all', 'same', 'diff']:
                hists[htype] = plotting.make_hist_from_list(self.plotscores[htype], htype + '_pairscores')
                hists[htype].SetTitle(htype)
            plotting.draw(hists['all'], 'float', plotdir=plotdir, plotname='pairscores', more_hists=[hists['same'], hists['diff']])
            check_call(['./bin/makeHtml', plotdir, '3', 'null', 'svg'])
            check_call(['./bin/permissify-www', plotdir])

        for query, cluster_id in self.query_clusters.iteritems():
            if cluster_id not in self.id_clusters:
                self.id_clusters[cluster_id] = []
            self.id_clusters[cluster_id].append(query)
        for cluster_id, queries in self.id_clusters.items():
            if len(queries) == 1:
                self.singletons.append(queries[0])

        # print 'nearest',self.nearest_true_mate
        out_str_list = ['  %d clusters:\n'%len(self.id_clusters), ]
        for cluster_id in self.id_clusters:
            out_str_list.append('   ' + ' '.join([str(x) for x in self.id_clusters[cluster_id]]) + '\n')
        if outfile == None:
            print ''.join(out_str_list)
        else:
            outfile.write(''.join(out_str_list))
Beispiel #13
0
def main():

    fig, ax = plt.subplots(3, 4, figsize=(15, 10))
    fig.tight_layout()

    #terrain = make_test_data('circles', noise_factor=0.0)
    terrain = make_test_data('hills', noise_factor=0.1)

    # Scale terrain.
    terrain *= 5

    # Don't auto scale the intensities, it gives the wrong impression
    inorm = mpl.colors.Normalize(vmin=0.0, vmax=1.0)

    # Draw the terrain as color map
    draw(ax[0, 0],
         cmap=plt.cm.gist_earth,
         title='No shading',
         ticks=True,
         image_data=terrain)

    # Draw empty space
    ax[1, 0].set_axis_off()
    ax[2, 0].set_axis_off()

    cmap = INTENSITY_CMAP
    azim0_is_east = True  # If true, azimuth 0 will correspond to east just as in our implementation
    azimuths = [45, 90, 135]
    #elev = 50

    # At low elevation you will see still noise bumps in places that are completely in the shadows.
    # This may seem nice but it is incorrect.
    elev = 15

    for idx, azim in enumerate(azimuths):
        col = idx + 1

        draw(ax[0, col],
             cmap=cmap,
             norm=inorm,
             title="MPL normalized (azim = {}, elev = {})".format(azim, elev),
             image_data=mpl_surface_intensity(terrain,
                                              azimuth=azim,
                                              elevation=elev,
                                              azim0_is_east=azim0_is_east,
                                              normalize=True))

        draw(ax[1, col],
             cmap=cmap,
             norm=inorm,
             title="MPL (azim = {}, elev = {})".format(azim, elev),
             image_data=mpl_surface_intensity(terrain,
                                              azimuth=azim,
                                              elevation=elev,
                                              azim0_is_east=azim0_is_east,
                                              normalize=False))

        draw(ax[2, col],
             cmap=cmap,
             norm=inorm,
             title="Diffuse (azim = {}, elev = {})".format(azim, elev),
             image_data=relative_surface_intensity(terrain,
                                                   azimuth=azim,
                                                   elevation=elev))

    plt.show()
def main():
    fig, ax = plt.subplots(2, 2, figsize=(10, 10))
    fig.tight_layout()

    data = make_test_data('circles')
    terrain = 10 * make_test_data('hills', noise_factor=0.05)
    assert terrain.shape == data.shape, "{} != {}".format(
        terrain.shape, data.shape)
    print("min data: {}".format(np.min(data)))
    print("max data: {}".format(np.max(data)))

    # Some color maps to try.
    #cmap = plt.cm.get_cmap('bwr')
    #cmap = plt.cm.get_cmap('CMRmap')
    #cmap = plt.cm.get_cmap('rainbow')
    #cmap = plt.cm.get_cmap('cool_r')
    cmap = plt.cm.get_cmap('Set1')

    # Optionally set the over and under flow colors.
    #cmap.set_bad('yellow')
    #cmap.set_over('cyan')
    #cmap.set_under('magenta')

    if ['--autoscale'] in sys.argv:
        print("Auto scale legend")
        dnorm = mpl.colors.Normalize()
    else:
        dmin = 0
        dmax = 10
        print("clip legend at ({}, {})".format(dmin, dmax))
        dnorm = mpl.colors.Normalize(vmin=dmin, vmax=dmax)

    # Don't auto scale the intensities, it gives the wrong impression
    inorm = mpl.colors.Normalize(vmin=0.0, vmax=1.0)

    azimuth = DEF_AZIMUTH
    elevation = DEF_ELEVATION

    draw(ax[0, 0],
         cmap=plt.cm.gist_earth,
         title='Terrain height',
         image_data=terrain)

    draw(ax[0, 1],
         cmap=INTENSITY_CMAP,
         norm=inorm,
         title='Shaded terrain (azim = {}, elev = {})'.format(
             azimuth, elevation),
         image_data=hill_shade(terrain,
                               blend_function=no_blending,
                               azimuth=azimuth,
                               elevation=elevation))

    draw(ax[1, 0],
         cmap=cmap,
         norm=dnorm,
         title='Surface properties',
         image_data=data)

    draw(ax[1, 1],
         cmap=cmap,
         norm=dnorm,
         title='Shaded terrain with surface properties',
         image_data=hill_shade(data,
                               terrain=terrain,
                               azimuth=azimuth,
                               elevation=elevation,
                               cmap=cmap,
                               norm=dnorm))
    plt.show()
    def plot(self, base_plotdir, cyst_positions=None, tryp_positions=None):
        if not self.finalized:
            self.finalize()

        plotdir = base_plotdir + '/mute-freqs'
        utils.prep_dir(plotdir + '/plots', multilings=('*.csv', '*.svg'))
        for region in utils.regions:
            utils.prep_dir(plotdir + '/' + region + '/plots',
                           multilings=('*.csv', '*.svg'))
            utils.prep_dir(plotdir + '/' + region + '-per-base/plots',
                           multilings=('*.csv', '*.png'))

        for gene in self.counts:
            counts, plotting_info = self.counts[gene], self.plotting_info[gene]
            sorted_positions = sorted(counts)
            hist = TH1D('hist_' + utils.sanitize_name(gene), '',
                        sorted_positions[-1] - sorted_positions[0] + 1,
                        sorted_positions[0] - 0.5, sorted_positions[-1] + 0.5)
            for position in sorted_positions:
                hist.SetBinContent(hist.FindBin(position),
                                   counts[position]['freq'])
                hi_diff = abs(counts[position]['freq'] -
                              counts[position]['freq_hi_err'])
                lo_diff = abs(counts[position]['freq'] -
                              counts[position]['freq_lo_err'])
                err = 0.5 * (hi_diff + lo_diff)
                hist.SetBinError(hist.FindBin(position), err)
            plotfname = plotdir + '/' + utils.get_region(
                gene) + '/plots/' + utils.sanitize_name(gene) + '.svg'
            xline = None
            if utils.get_region(gene) == 'v' and cyst_positions is not None:
                xline = cyst_positions[gene]['cysteine-position']
            elif utils.get_region(gene) == 'j' and tryp_positions is not None:
                xline = int(tryp_positions[gene])
            plotting.draw(hist,
                          'int',
                          plotdir=plotdir + '/' + utils.get_region(gene),
                          plotname=utils.sanitize_name(gene),
                          errors=True,
                          write_csv=True,
                          xline=xline,
                          draw_str='e')  #, cwidth=4000, cheight=1000)
            paramutils.make_mutefreq_plot(
                plotdir + '/' + utils.get_region(gene) + '-per-base',
                utils.sanitize_name(gene), plotting_info)

        # make mean mute freq hists
        hist = plotting.make_hist_from_my_hist_class(self.mean_rates['all'],
                                                     'all-mean-freq')
        plotting.draw(hist,
                      'float',
                      plotname='all-mean-freq',
                      plotdir=plotdir,
                      stats='mean',
                      bounds=(0.0, 0.4),
                      write_csv=True)
        for region in utils.regions:
            hist = plotting.make_hist_from_my_hist_class(
                self.mean_rates[region], region + '-mean-freq')
            plotting.draw(hist,
                          'float',
                          plotname=region + '-mean-freq',
                          plotdir=plotdir,
                          stats='mean',
                          bounds=(0.0, 0.4),
                          write_csv=True)
        check_call(['./bin/makeHtml', plotdir, '3', 'null', 'svg'])

        # then write html file and fix permissiions
        for region in utils.regions:
            check_call(
                ['./bin/makeHtml', plotdir + '/' + region, '1', 'null', 'svg'])
            check_call([
                './bin/makeHtml', plotdir + '/' + region + '-per-base', '1',
                'null', 'png'
            ])
        check_call(
            ['./bin/permissify-www', plotdir]
        )  # NOTE this should really permissify starting a few directories higher up