data = pd.read_csv('errors/li_durbin_errors_{0}.csv'.format(s)) traces = [] for n in islands: traces.append(Box(y=list(data[str(n)]), name=n)) traces = Data(traces) layout = Layout( title='{0} switches errors'.format(s), xaxis=XAxis( title='Islands' ), yaxis=YAxis( title='Squared error' ) ) fig = Figure(data=traces, layout=layout) plot_url = py.plot(fig, filename='{0} switches'.format(s)) ######################### ### Time distribution ### ######################### file = 'individuals/{0}_switches/{1}_islands.json' islands = 12 for s in switches: individual = json.loads(open(file.format(s, islands)).read()) m = model.StSICMR(individual['n'], individual['T'], individual['M']) plotting.plotModel(m, liDurbin_tk, liDurbin_lk, logScale=True, save=str(s), show=False)
l0 = 1 / l_list[0] t_list *= l0 l_list *= l0 ######################### ### Genetic Algorithm ### ######################### # Build a group of models pop = genalg.Population(model.StSICMR, t_list, l_list, maxIslands=100, switches=3, size=1000, repetitions=5) # Enhance them all pop.enhance(200) # Plot the best one plotting.plotModel(pop.best.model, t_list, l_list, logScale=True) ################ ### Boxplots ### ################ #switches = range(2, 7) #islands = range(2, 31) #for s in switches: # data = pd.DataFrame() # for n in islands: # errors = [] # minError = np.inf # bestIndi = None # for _ in range(20): # pop = genalg.Population(model.StSICMR, liDurbin_tk, liDurbin_lk,
import sys sys.path.append('../../lib/') from inference import genalg import model import plotting import psmcfit data = psmcfit.get_psmc_history('Norduz.psmc') times, lambdas = psmcfit.search_increase(data['times'], data['lambdas']) l0 = 1 / lambdas[0] times *= l0 lambdas *= l0 #~ # Build a group of models pop = genalg.Population(model.StSICMR, times, lambdas, maxIslands=100, switches=4, size=1000, repetitions=4) # Enhance them all pop.enhance(1000) # Plot the best one plotting.plotModel(pop.best.model, times, lambdas, logScale=True)