Beispiel #1
0
def single_envelope(outcomes,
                    outcome_to_plot,
                    time,
                    density,
                    ax,
                    ax_d,
                    fill,
                    **kwargs):
    '''
    
    Helper function for generating a single envelope plot.

    :param outcomes: a dictonary containing the various outcomes to plot
    :param outcome_to_plot: the specific outcome to plot
    :param time: the name of the time dimension
    :param density: string, either hist, kde, or empty/None.    
    :param ax: the ax on which to plot
    :param ax_d: the ax on which to plot the density
    :param fill: boolean, if true, fill the envelope. 
    :param kwargs: kwargs to be passed on to the hlepr function for plotting
                   the density.
    
    '''
    value = outcomes[outcome_to_plot]
    
    plot_envelope(ax, 0, time, value,fill)
    if density:
        simple_density(density, value, ax_d, ax, **kwargs)
Beispiel #2
0
def simple_lines(outcomes, outcome_to_plot, time, density,
                 ax, ax_d, log):
    '''
    
    Helper function responsible for generating a simple lines plot. 
    
    :param outcomes: a dictonary containing the various outcomes to plot
    :param outcome_to_plot: the specific outcome to plot
    :param time: the name of the time dimension
    :param density: string, either hist, kde, or empty/None. 
    :param ax: the ax on which to plot
    :param ax_d: the ax on which to plot the density
    :param log: boolean, log scale density plot
    
    '''    
    value = outcomes[outcome_to_plot]
    ax.plot(time.T, value.T)
    if density:
        simple_density(density, value, ax_d, ax, log)
Beispiel #3
0
def simple_lines(outcomes, outcome_to_plot, time, density,
                 ax, ax_d, **kwargs):
    '''
    
    Helper function responsible for generating a simple lines plot. 
    
    :param outcomes: a dictonary containing the various outcomes to plot
    :param outcome_to_plot: the specific outcome to plot
    :param time: the name of the time dimension
    :param density: string, either hist, kde, or empty/None. 
    :param ax: the ax on which to plot
    :param ax_d: the ax on which to plot the density
    :param kwargs: kwargs to be passed on to the hlepr function for plotting
                   the density.
    
    '''    
    value = outcomes[outcome_to_plot]
    ax.plot(time.T, value.T)
    if density:
        simple_density(density, value, ax_d, ax, **kwargs)
Beispiel #4
0
def plot_lines_with_envelopes(results, 
                              outcomes_to_show = [],
                              group_by = None,
                              grouping_specifiers = None,
                              density='',
                              titles={},
                              ylabels={},
                              legend=True,
                              experiments_to_show=None,
                              **kwargs):
    '''
    
    Helper function for generating a plot which contains both an envelope and
    lines.  

    :param results: return from :meth:`perform_experiments`.
    :param outcomes_to_show: list of outcome of interest you want to plot. If 
                             empty, all outcomes are plotted. **Note**:  just 
    :param group_by: name of the column in the cases array to group results by.
                     Alternatively, `index` can be used to use indexing arrays 
                     as the basis for grouping.
    :param grouping_specifiers: set of categories to be used as a basis for 
                                grouping by. Grouping_specifiers is only 
                                meaningful if group_by is provided as well. In
                                case of grouping by index, the grouping 
                                specifiers should be in a dictonary where the
                                key denotes the name of the group. 
    :param density: boolean, if true, the density of the endstates will be 
                    plotted.
    :param titles: a way for controlling whether each of the axes should have
               a title. There are three possibilities. If set to None, no
               title will be shown for any of the axes. If set to an empty 
               dict, the default, the title is identical to the name of the
               outcome of interest. If you want to override these default 
               names, provide a dict with the outcome of interest as key 
               and the desired title as value. This dict need only contain
               the outcomes for which you want to use a different title. 
    :param ylabels: a way for controlling the ylablels. Works identical to 
                    titles.
    :param legend: boolean, if true, and there is a column specified for 
                   grouping, show a legend
    :param experiments_to_show: numpy array containing the indices of the 
                                experiments to be visualized. Defaults to None,
                                implying that all experiments should be shown.
    :rtype: a `figure <http://matplotlib.sourceforge.net/api/figure_api.html>`_ instance

    Additional key word arguments will be passed along to the density function.
    
    ======== ===============================
    property description
    ======== ===============================
    log      log scale the histogram or GKDE
    ======== ===============================
    
    '''
   
    # make sure we have the data
    full_results = copy.deepcopy(results)
      
    experiments, outcomes = results
    experiments = experiments[experiments_to_show]
    new_outcomes={}
    for key, value in outcomes.items():
        new_outcomes[key] =value[experiments_to_show]
    results = experiments, new_outcomes

    data = prepare_data(results, outcomes_to_show, group_by, 
                        grouping_specifiers)
    outcomes, outcomes_to_show, time, grouping_labels = data
    
    full_outcomes = prepare_data(full_results, outcomes_to_show, group_by,
                             grouping_specifiers)[0]

    figure, grid = make_grid(outcomes_to_show, density)
    axes_dict = {}

    # do the plotting
    for i, outcome_to_plot in enumerate(outcomes_to_show):
        ax = figure.add_subplot(grid[i,0])
        axes_dict[outcome_to_plot] = ax
        
        ax_d= None
        if density:
            ax_d = figure.add_subplot(grid[i,1])
            axes_dict[outcome_to_plot+"_density"] = ax_d
            
            for tl in ax_d.get_yticklabels():
                tl.set_visible(False)
    
        if group_by:
#            group_by_labels = sorted(outcomes.keys())
            for j, key in enumerate(grouping_labels):
                full_value = full_outcomes[key][outcome_to_plot]
                plot_envelope(ax, j, time, full_value, fill=True)
            for j, key in enumerate(grouping_labels):
                value = outcomes[key][outcome_to_plot]
                full_value = full_outcomes[key][outcome_to_plot]
                ax.plot(time.T[:, np.newaxis], value.T, COLOR_LIST[j])
                if density=='kde':
                    simple_density(density, full_value, ax_d, ax, **kwargs)
#                    kde_x, kde_y = determine_kde(full_value[:,-1])
#                    plot_kde(ax_d, kde_x, kde_y, j, **kwargs)
            
            if density:
                if density=='hist':
                    values = [full_outcomes[key][outcome_to_plot][:,-1]\
                                                    for key in grouping_labels]
                    plot_histogram(ax_d, values, **kwargs)
               
                ax_d.get_yaxis().set_view_interval(
                             ax.get_yaxis().get_view_interval()[0],
                             ax.get_yaxis().get_view_interval()[1])
            
        else:
            value = full_outcomes[outcome_to_plot]
            plot_envelope(ax, 0, time, value, fill=True)
            if density:
                simple_density(density, value, ax_d, ax, **kwargs)
            
            value = outcomes[outcome_to_plot]
            ax.plot(time.T, value.T)
        
        ax.set_xlim(xmin=time[0] , xmax=time[-1])
        ax.set_xlabel(TIME_LABEL)
        do_ylabels(ax, ylabels, outcome_to_plot)
        do_titles(ax, titles, outcome_to_plot)

    if legend and group_by:
        make_legend(grouping_labels, figure)
    
    if plotting_util.TIGHT:
        grid.tight_layout(figure)
    
    return figure, axes_dict