def show_chip_distinctiveness_plot(chip, kpts, dstncvs, fnum=1, pnum=None): import plottool as pt pt.figure(fnum, pnum=pnum) ax = pt.gca() divider = pt.ensure_divider(ax) #ax1 = divider.append_axes("left", size="50%", pad=0) ax1 = ax ax2 = divider.append_axes("bottom", size="100%", pad=0.05) #f, (ax1, ax2) = pt.plt.subplots(1, 2, sharex=True) cmapstr = 'rainbow' # 'hot' color_list = pt.df2.plt.get_cmap(cmapstr)(ut.norm_zero_one(dstncvs)) sortx = dstncvs.argsort() #pt.df2.plt.plot(qfx2_dstncvs[sortx], c=color_list[sortx]) pt.plt.sca(ax1) pt.colorline(np.arange(len(sortx)), dstncvs[sortx], cmap=pt.plt.get_cmap(cmapstr)) pt.gca().set_xlim(0, len(sortx)) pt.dark_background() pt.plt.sca(ax2) pt.imshow(chip, darken=.2) # MATPLOTLIB BUG CANNOT SHOW DIFFERENT ALPHA FOR POINTS AND KEYPOINTS AT ONCE #pt.draw_kpts2(kpts, pts_color=color_list, ell_color=color_list, ell_alpha=.1, ell=True, pts=True) #pt.draw_kpts2(kpts, color_list=color_list, pts_alpha=1.0, pts_size=1.5, # ell=True, ell_alpha=.1, pts=False) ell = ut.get_argflag('--ell') pt.draw_kpts2(kpts, color_list=color_list, pts_alpha=1.0, pts_size=1.5, ell=ell, ell_alpha=.3, pts=not ell) pt.plt.sca(ax)
def testshow_extramargin_info(ibs, aid_list, arg_list, newsize_list, halfoffset_cs_list): #cfpath, gfpath, bbox, theta, new_size, filter_list = tup # TEMP TESTING from vtool import chip as ctool import plottool as pt import vtool as vt from ibeis.viz import viz_chip index = 0 cfpath, gfpath, expanded_bbox, theta, expanded_new_size, filter_list = arg_list[index] expanded_chipBGR = ctool.compute_chip(gfpath, expanded_bbox, theta, expanded_new_size, filter_list) bbox_cs_list = [ (xo_pcs, yo_pcs, w_pcs, h_pcs) for (w_pcs, h_pcs), (xo_pcs, yo_pcs) in zip(newsize_list, halfoffset_cs_list) ] bbox_pcs = bbox_cs_list[index] aid = aid_list[0] #print('new_size = %r' % (new_size,)) print('newsize_list[index] = %r' % (newsize_list[index],)) fnum = 1 viz_chip.show_chip(ibs, aid, pnum=(1, 3, 1), fnum=fnum, annote=False, in_image=True, title_suffix='\noriginal image') viz_chip.show_chip(ibs, aid, pnum=(1, 3, 2), fnum=fnum, annote=False, title_suffix='\noriginal chip') bboxed_chip = vt.draw_verts(expanded_chipBGR, vt.scaled_verts_from_bbox(bbox_pcs, theta, 1, 1)) pt.imshow(bboxed_chip, pnum=(1, 3, 3), fnum=fnum, title='scaled chip with expanded margin.\n(orig margin drawn in orange)') pt.gca().set_xlabel(str(bboxed_chip.shape)) pt.show_if_requested()
def test_mcc(): import plottool as pt import sklearn.metrics num = 100 xdata = np.linspace(0, 1, num * 2) ydata = np.linspace(1, -1, num * 2) pt.plt.plot(xdata, ydata, '--k', label='linear') y_true = [1] * num + [0] * num y_pred = y_true[:] xs = [] for i in range(0, len(y_true)): y_pred[-i] = 1 - y_pred[-i] xs.append(sklearn.metrics.matthews_corrcoef(y_true, y_pred)) pt.plot(xdata, xs, label='change one class at a time') y_true = ut.flatten(zip([1] * num, [0] * num)) y_pred = y_true[:] xs = [] for i in range(0, len(y_true)): y_pred[-i] = 1 - y_pred[-i] xs.append(sklearn.metrics.matthews_corrcoef(y_true, y_pred)) pt.plot(xdata, xs, label='change classes evenly') pt.gca().legend()
def draw_tree_model(model, **kwargs): import plottool as pt import networkx as netx if not ut.get_argval('--hackjunc'): fnum = pt.ensure_fnum(None) fig = pt.figure(fnum=fnum, doclf=True) # NOQA ax = pt.gca() #name_nodes = sorted(ut.list_getattr(model.ttype2_cpds[NAME_TTYPE], 'variable')) netx_graph = model.to_markov_model() #pos = netx.pygraphviz_layout(netx_graph) #pos = netx.graphviz_layout(netx_graph) #pos = get_hacked_pos(netx_graph, name_nodes, prog='neato') pos = netx.nx_pydot.pydot_layout(netx_graph) node_color = [pt.WHITE] * len(pos) drawkw = dict(pos=pos, ax=ax, with_labels=True, node_color=node_color, node_size=1100) netx.draw(netx_graph, **drawkw) if kwargs.get('show_title', True): pt.set_figtitle('Markov Model') if not ut.get_argval('--hackmarkov'): fnum = pt.ensure_fnum(None) fig = pt.figure(fnum=fnum, doclf=True) # NOQA ax = pt.gca() netx_graph = model.to_junction_tree() # prettify nodes def fixtupkeys(dict_): return { ', '.join(k) if isinstance(k, tuple) else k: fixtupkeys(v) for k, v in dict_.items() } # FIXME n = fixtupkeys(netx_graph.node) e = fixtupkeys(netx_graph.edge) a = fixtupkeys(netx_graph.adj) netx_graph.nodes.update(n) netx_graph.edges.update(e) netx_graph.adj.update(a) #netx_graph = model.to_markov_model() #pos = netx.pygraphviz_layout(netx_graph) #pos = netx.graphviz_layout(netx_graph) pos = netx.nx_pydot.pydot_layout(netx_graph) node_color = [pt.WHITE] * len(pos) drawkw = dict(pos=pos, ax=ax, with_labels=True, node_color=node_color, node_size=2000) netx.draw(netx_graph, **drawkw) if kwargs.get('show_title', True): pt.set_figtitle('Junction/Clique Tree / Cluster Graph')
def testshow_extramargin_info(ibs, aid_list, arg_list, newsize_list, halfoffset_cs_list): #cfpath, gfpath, bbox, theta, new_size, filter_list = tup # TEMP TESTING from vtool import chip as ctool import plottool as pt import vtool as vt from ibeis.viz import viz_chip index = 0 cfpath, gfpath, expanded_bbox, theta, expanded_new_size, filter_list = arg_list[ index] expanded_chipBGR = ctool.compute_chip(gfpath, expanded_bbox, theta, expanded_new_size, filter_list) bbox_cs_list = [ (xo_pcs, yo_pcs, w_pcs, h_pcs) for (w_pcs, h_pcs), (xo_pcs, yo_pcs) in zip(newsize_list, halfoffset_cs_list) ] bbox_pcs = bbox_cs_list[index] aid = aid_list[0] #print('new_size = %r' % (new_size,)) print('newsize_list[index] = %r' % (newsize_list[index], )) fnum = 1 viz_chip.show_chip(ibs, aid, pnum=(1, 3, 1), fnum=fnum, annote=False, in_image=True, title_suffix='\noriginal image') viz_chip.show_chip(ibs, aid, pnum=(1, 3, 2), fnum=fnum, annote=False, title_suffix='\noriginal chip') bboxed_chip = vt.draw_verts( expanded_chipBGR, vt.scaled_verts_from_bbox(bbox_pcs, theta, 1, 1)) pt.imshow( bboxed_chip, pnum=(1, 3, 3), fnum=fnum, title='scaled chip with expanded margin.\n(orig margin drawn in orange)' ) pt.gca().set_xlabel(str(bboxed_chip.shape)) pt.show_if_requested()
def plot(self, fnum, pnum): self.update_netx_graph() #if split_check: #{self.infr.model.graph} if split_check: layoutkw = dict(prog='neato', splines='spline', sep=10 / 72) self.plotinfo = pt.show_nx(self.infr.model.graph, as_directed=False, fnum=self.fnum, layoutkw=layoutkw, use_image=self.use_image, verbose=0) #ax = pt.gca() #pt.zoom_factory() else: self.plotinfo = viz_netx_chipgraph(self.ibs, self.graph, fnum=self.fnum, use_image=self.use_image, **kwargs) ax = pt.gca() self.enable_pan_and_zoom(ax) ax.autoscale() for aid in self.selected_aids: self.highlight_aid(aid) self.make_hud()
def _plotarrow(x, y, dx, dy, color=pt.BLUE, label=''): ax = pt.gca() arrowargs = dict(head_width=.5, length_includes_head=True, label=label) arrow = mpl.patches.FancyArrow(x, y, dx, dy, **arrowargs) arrow.set_edgecolor(color) arrow.set_facecolor(color) ax.add_patch(arrow)
def show_page(self): if self.fig is None: raise AssertionError('fig is None, did you run interction.start()?') import plottool as pt fig = ih.begin_interaction('expandable', self.fnum) if not any(self.pnum_list) and self.nRows is None and self.nRows is None: # Hack if no pnum was given self.nRows, self.nCols = pt.get_num_rc(len(self.pnum_list), nRows=self.nRows, nCols=self.nCols) nSubplots = len(self.func_list) pnum_ = pt.make_pnum_nextgen(self.nRows, self.nCols, nSubplots=nSubplots) self.pnum_list = [pnum_() for _ in self.pnum_list] for index, (pnum, func) in enumerate(zip(self.pnum_list, self.func_list)): if check_if_subinteract(func): # Hack interclass = func interclass.static_plot(fnum=self.fnum, pnum=pnum) elif hasattr(func, 'plot'): inter = func inter.plot(fnum=self.fnum, pnum=pnum) else: func(fnum=self.fnum, pnum=pnum) ax = pt.gca() pt.set_plotdat(ax, 'plot_func', func) pt.set_plotdat(ax, 'expandable_index', index) #if self.interactive is None or self.interactive: # ih.connect_callback(fig, 'button_press_event', self.onclick) self.connect_callbacks() self.fig = fig return fig
def draw_junction_tree(model, fnum=None, **kwargs): import plottool as pt fnum = pt.ensure_fnum(fnum) pt.figure(fnum=fnum) ax = pt.gca() from pgmpy.models import JunctionTree if not isinstance(model, JunctionTree): netx_graph = model.to_junction_tree() else: netx_graph = model # prettify nodes def fixtupkeys(dict_): return { ', '.join(k) if isinstance(k, tuple) else k: fixtupkeys(v) for k, v in dict_.items() } n = fixtupkeys(netx_graph.node) e = fixtupkeys(netx_graph.edge) a = fixtupkeys(netx_graph.adj) netx_graph.node = n netx_graph.edge = e netx_graph.adj = a #netx_graph = model.to_markov_model() #pos = netx.pygraphviz_layout(netx_graph) #pos = netx.graphviz_layout(netx_graph) pos = netx.pydot_layout(netx_graph) node_color = [pt.NEUTRAL] * len(pos) drawkw = dict(pos=pos, ax=ax, with_labels=True, node_color=node_color, node_size=2000) netx.draw(netx_graph, **drawkw) if kwargs.get('show_title', True): pt.set_figtitle('Junction / Clique Tree / Cluster Graph')
def draw_tree_model(model, **kwargs): import plottool as pt import networkx as netx if not ut.get_argval('--hackjunc'): fnum = pt.ensure_fnum(None) fig = pt.figure(fnum=fnum, doclf=True) # NOQA ax = pt.gca() #name_nodes = sorted(ut.list_getattr(model.ttype2_cpds['name'], 'variable')) netx_graph = model.to_markov_model() #pos = netx.pygraphviz_layout(netx_graph) #pos = netx.graphviz_layout(netx_graph) #pos = get_hacked_pos(netx_graph, name_nodes, prog='neato') pos = netx.pydot_layout(netx_graph) node_color = [pt.WHITE] * len(pos) drawkw = dict(pos=pos, ax=ax, with_labels=True, node_color=node_color, node_size=1100) netx.draw(netx_graph, **drawkw) if kwargs.get('show_title', True): pt.set_figtitle('Markov Model') if not ut.get_argval('--hackmarkov'): fnum = pt.ensure_fnum(None) fig = pt.figure(fnum=fnum, doclf=True) # NOQA ax = pt.gca() netx_graph = model.to_junction_tree() # prettify nodes def fixtupkeys(dict_): return { ', '.join(k) if isinstance(k, tuple) else k: fixtupkeys(v) for k, v in dict_.items() } n = fixtupkeys(netx_graph.node) e = fixtupkeys(netx_graph.edge) a = fixtupkeys(netx_graph.adj) netx_graph.node = n netx_graph.edge = e netx_graph.adj = a #netx_graph = model.to_markov_model() #pos = netx.pygraphviz_layout(netx_graph) #pos = netx.graphviz_layout(netx_graph) pos = netx.pydot_layout(netx_graph) node_color = [pt.WHITE] * len(pos) drawkw = dict(pos=pos, ax=ax, with_labels=True, node_color=node_color, node_size=2000) netx.draw(netx_graph, **drawkw) if kwargs.get('show_title', True): pt.set_figtitle('Junction/Clique Tree / Cluster Graph')
def draw_sift_on_patch(patch, sift, **kwargs): import plottool as pt pt.imshow(patch) ax = pt.gca() half_size = patch.shape[0] / 2 invVR = np.array([[half_size, 0, half_size], [0, half_size, half_size], [0, 0, 1]]) invVR_aff2Ds = np.array([invVR]) sifts = np.array([sift]) return draw_sifts(ax, sifts, invVR_aff2Ds)
def static_plot(self, fnum=None, pnum=(1, 1, 1)): import plottool as pt self.ax = pt.gca() #self.ax.imshow(img, interpolation='nearest', alpha=1) #self.ax.imshow(mask, interpolation='nearest', alpha=0.6) pt.imshow(self.img, ax=self.ax, interpolation='nearest', alpha=1) pt.imshow(self.mask, ax=self.ax, interpolation='nearest', alpha=0.6) self.update_title() self.ax.grid(False)
def plot(self, fnum, pnum): from ibeis.viz.viz_graph import viz_netx_chipgraph self.update_netx_graph() self.pos = viz_netx_chipgraph(self.ibs, self.netx_graph, fnum=self.fnum, with_images=self.with_images, zoom=zoom) self.ax = pt.gca() for aid in self.selected_aids: self.highlight_aid(aid) pass
def plot_image(self, index): px = index - self.start_index gpath = self.gpath_list[index] if self.vizkw is None: _vizkw = {} else: _vizkw = self.vizkw.copy() _vizkw.update({ 'fnum': self.fnum, 'pnum': self.pnum_(px), }) if ut.is_funclike(gpath): showfunc = gpath # HACK # override of plot image function showfunc(**_vizkw) import plottool as pt ax = pt.gca() else: if isinstance(gpath, six.string_types): img = vt.imread(gpath) else: img = gpath bbox_list = self.bboxes_list[index] #print('bbox_list %r in display for px: %r ' % (bbox_list, px)) theta_list = self.thetas_list[index] label_list = [ix + 1 for ix in range(len(bbox_list))] #Add true values for every bbox to display sel_list = [True for ix in range(len(bbox_list))] _vizkw.update({ #title should always be the image number 'title': str(index), 'bbox_list' : bbox_list, 'theta_list' : theta_list, 'sel_list' : sel_list, 'label_list' : label_list, }) #print(utool.dict_str(_vizkw)) #print('vizkw = ' + utool.dict_str(_vizkw)) _, ax = viz_image2.show_image(img, **_vizkw) if self.xlabel_list is not None: import plottool as pt pt.set_xlabel(self.xlabel_list[index]) #print(index) ph.set_plotdat(ax, 'bbox_list', bbox_list) ph.set_plotdat(ax, 'gpath', gpath) ph.set_plotdat(ax, 'px', str(px)) ph.set_plotdat(ax, 'index', index)
def plot_image(self, index): px = index - self.start_index gpath = self.gpath_list[index] if self.vizkw is None: _vizkw = {} else: _vizkw = self.vizkw.copy() _vizkw.update({ 'fnum': self.fnum, 'pnum': self.pnum_(px), }) if ut.is_funclike(gpath): showfunc = gpath # HACK # override of plot image function showfunc(**_vizkw) import plottool as pt ax = pt.gca() else: if isinstance(gpath, six.string_types): img = vt.imread(gpath) else: img = gpath bbox_list = self.bboxes_list[index] #print('bbox_list %r in display for px: %r ' % (bbox_list, px)) theta_list = self.thetas_list[index] label_list = [ix + 1 for ix in range(len(bbox_list))] #Add true values for every bbox to display sel_list = [True for ix in range(len(bbox_list))] _vizkw.update({ #title should always be the image number 'title': str(index), 'bbox_list': bbox_list, 'theta_list': theta_list, 'sel_list': sel_list, 'label_list': label_list, }) #print(utool.dict_str(_vizkw)) #print('vizkw = ' + utool.dict_str(_vizkw)) _, ax = viz_image2.show_image(img, **_vizkw) if self.xlabel_list is not None: import plottool as pt pt.set_xlabel(self.xlabel_list[index]) #print(index) ph.set_plotdat(ax, 'bbox_list', bbox_list) ph.set_plotdat(ax, 'gpath', gpath) ph.set_plotdat(ax, 'px', str(px)) ph.set_plotdat(ax, 'index', index)
def testshow_extramargin_info(gfpath, bbox_gs, theta, new_size, halfoffset_ms, mbbox_gs, margin_size): import plottool as pt import vtool as vt imgBGR = vt.imread(gfpath) chipBGR = compute_chip(gfpath, bbox_gs, theta, new_size, []) mchipBGR = compute_chip(gfpath, mbbox_gs, theta, margin_size, []) #index = 0 w_cs, h_cs = new_size xo_ms, yo_ms = halfoffset_ms bbox_ms = [xo_ms, yo_ms, w_cs, h_cs] verts_gs = vt.scaled_verts_from_bbox(bbox_gs, theta, 1, 1) expanded_verts_gs = vt.scaled_verts_from_bbox(mbbox_gs, theta, 1, 1) expanded_verts_ms = vt.scaled_verts_from_bbox(bbox_ms, 0, 1, 1) # topheavy imgBGR = vt.draw_verts(imgBGR, verts_gs) imgBGR = vt.draw_verts(imgBGR, expanded_verts_gs) mchipBGR = vt.draw_verts(mchipBGR, expanded_verts_ms) fnum = 1 pt.imshow(imgBGR, pnum=(1, 3, 1), fnum=fnum, title='original image') pt.gca().set_xlabel(str(imgBGR.shape)) pt.imshow(chipBGR, pnum=(1, 3, 2), fnum=fnum, title='original chip') pt.gca().set_xlabel(str(chipBGR.shape)) pt.imshow(mchipBGR, pnum=(1, 3, 3), fnum=fnum, title='scaled chip with expanded margin.\n(orig margin drawn in orange)') pt.gca().set_xlabel(str(mchipBGR.shape)) pt.show_if_requested()
def zoom_factory(ax=None, zoomable_list=[], base_scale=1.1): """ References: https://gist.github.com/tacaswell/3144287 http://stackoverflow.com/questions/11551049/matplotlib-plot-zooming-with-scroll-wheel """ if ax is None: ax = pt.gca() def zoom_fun(event): #print('zooming') # get the current x and y limits cur_xlim = ax.get_xlim() cur_ylim = ax.get_ylim() xdata = event.xdata # get event x location ydata = event.ydata # get event y location if xdata is None or ydata is None: return if event.button == 'up': # deal with zoom in scale_factor = 1 / base_scale elif event.button == 'down': # deal with zoom out scale_factor = base_scale else: raise NotImplementedError('event.button=%r' % (event.button,)) # deal with something that should never happen scale_factor = 1 print(event.button) for zoomable in zoomable_list: zoom = zoomable.get_zoom() new_zoom = zoom / (scale_factor ** (1.2)) zoomable.set_zoom(new_zoom) # Get distance from the cursor to the edge of the figure frame x_left = xdata - cur_xlim[0] x_right = cur_xlim[1] - xdata y_top = ydata - cur_ylim[0] y_bottom = cur_ylim[1] - ydata ax.set_xlim([xdata - x_left * scale_factor, xdata + x_right * scale_factor]) ax.set_ylim([ydata - y_top * scale_factor, ydata + y_bottom * scale_factor]) # ---- ax.figure.canvas.draw() # force re-draw fig = ax.get_figure() # get the figure of interest # attach the call back fig.canvas.mpl_connect('scroll_event', zoom_fun) #return the function return zoom_fun
def show_edge(infr, edge, fnum=None, pnum=None, **kwargs): import plottool as pt match = infr._exec_pairwise_match([edge])[0] fnum = pt.ensure_fnum(fnum) pt.figure(fnum=fnum, pnum=pnum) ax = pt.gca() showkw = dict(vert=False, heatmask=True, show_lines=False, show_ell=False, show_ori=False, show_eig=False, modifysize=True) showkw.update(kwargs) match.show(ax, **showkw)
def plot(self, fnum, pnum): self.infr.update_visual_attrs(self.show_cuts) layoutkw = dict(prog='neato', splines='spline', sep=10 / 72) #draw_implicit=self.show_cuts) self.plotinfo = pt.show_nx( self.infr.graph, as_directed=False, fnum=self.fnum, layoutkw=layoutkw, #node_labels=True, modify_ax=False, use_image=self.use_image, verbose=0) ut.util_graph.graph_info(self.infr.graph, verbose=True) #_, edge_weights, edge_colors = self.infr.get_colored_edge_weights() #pt.colorbar(edge_weights, edge_colors, lbl='weights') # _normal_ticks = np.linspace(0, 1, num=11) # _normal_scores = np.linspace(0, 1, num=500) # _normal_colors = self.infr.get_colored_weights(_normal_scores) # cb = pt.colorbar(_normal_scores, _normal_colors, lbl='weights', # ticklabels=_normal_ticks) # cb.ax.annotate('threshold', # xy=(1, self.infr.thresh), # xytext=(2.5, .3 if self.infr.thresh < .5 else .7), # arrowprops=dict( # alpha=.5, # fc="0.6", # connectionstyle="angle3,angleA=90,angleB=0"),) ax = pt.gca() self.enable_pan_and_zoom(ax) #ax.autoscale() for aid in self.selected_aids: self.highlight_aid(aid, pt.ORANGE) #self.static_plot(fnum, pnum) self.make_hud() #print(ut.repr2(self.infr.graph.edges, nl=2)) print('Finished Plot')
def visualize(encoder): import plottool as pt # is_timedata = False is_timedelta = True p_xdata = encoder.p_xdata xdata_domain = encoder.xdata_domain # if is_timedata: # xdata_domain_ = [ut.unixtime_to_datetimeobj(unixtime) for unixtime in xdata_domain] if is_timedelta: # xdata_domain_ = [ut.unixtime_to_timedelta(unixtime) for unixtime in xdata_domain] pass else: pass # xdata_domain_ = xdata_domain pt.plot_probabilities([p_xdata], [""], xdata=xdata_domain) ax = pt.gca() # HISTOGRAM if False: X = encoder.support["X"] xdata = X[~np.isnan(X)] n, bins, patches = pt.plt.hist(xdata, 1000) ax.set_xlabel("xdata") if is_timedelta: ax.set_xlabel("Time Delta") ax.set_title("Timedelta distribution") def timeTicks(x, pos): import datetime d = datetime.timedelta(seconds=x) return str(d) import matplotlib as mpl formatter = mpl.ticker.FuncFormatter(timeTicks) ax.xaxis.set_major_formatter(formatter) pt.gcf().autofmt_xdate()
def get_popup_options(self): from ibeis.gui import inspect_gui options = [] ax = pt.gca() # HACK from plottool import plot_helpers as ph viztype = ph.get_plotdat(ax, 'viztype', '') is_match_type = viztype in ['matches', 'multi_match'] if is_match_type: options += inspect_gui.get_aidpair_context_menu_options( self.ibs, self.qaid, self.daid, self.cm, qreq_=self.qreq_, #update_callback=self.show_page, #backend_callback=None, aid_list=aid_list) ) options += [ #('Toggle same_fig', self.toggle_samefig), #('Toggle vert', self.toggle_vert), ('query last feature', self.query_last_feature), ('show each chip', self.show_each_chip), ('show each distinctiveness chip', self.show_each_dstncvs_chip), ('show each foreground weight chip', self.show_each_fgweight_chip), ('show each probchip', self.show_each_probchip), ('show coverage', self.show_coverage), #('show each probchip', self.query_last_feature), ] #options.append(('name_interaction', self.name_interaction)) #if self.H1 is not None: # options.append(('Toggle homog', self.toggle_homog)) if ut.is_developer(): options.append(('dev_reload', self.dev_reload)) options.append(('dev_embed', self.dev_embed)) #options.append(('cancel', lambda: print('cancel'))) options += super(MatchInteraction, self).get_popup_options() return options
def visualize(encoder): import plottool as pt #is_timedata = False is_timedelta = True p_xdata = encoder.p_xdata xdata_domain = encoder.xdata_domain #if is_timedata: # xdata_domain_ = [ut.unixtime_to_datetimeobj(unixtime) for unixtime in xdata_domain] if is_timedelta: #xdata_domain_ = [ut.unixtime_to_timedelta(unixtime) for unixtime in xdata_domain] pass else: pass #xdata_domain_ = xdata_domain pt.plot_probabilities([p_xdata], [''], xdata=xdata_domain) ax = pt.gca() # HISTOGRAM if False: X = encoder.support['X'] xdata = X[~np.isnan(X)] n, bins, patches = pt.plt.hist(xdata, 1000) ax.set_xlabel('xdata') if is_timedelta: ax.set_xlabel('Time Delta') ax.set_title('Timedelta distribution') def timeTicks(x, pos): import datetime d = datetime.timedelta(seconds=x) return str(d) import matplotlib as mpl formatter = mpl.ticker.FuncFormatter(timeTicks) ax.xaxis.set_major_formatter(formatter) pt.gcf().autofmt_xdate()
def draw_junction_tree(model, fnum=None, **kwargs): import plottool as pt fnum = pt.ensure_fnum(fnum) pt.figure(fnum=fnum) ax = pt.gca() from pgmpy.models import JunctionTree if not isinstance(model, JunctionTree): netx_graph = model.to_junction_tree() else: netx_graph = model # prettify nodes def fixtupkeys(dict_): return { ', '.join(k) if isinstance(k, tuple) else k: fixtupkeys(v) for k, v in dict_.items() } n = fixtupkeys(netx_graph.node) e = fixtupkeys(netx_graph.edge) a = fixtupkeys(netx_graph.adj) netx_graph.node = n netx_graph.edge = e netx_graph.adj = a #netx_graph = model.to_markov_model() #pos = nx.nx_agraph.pygraphviz_layout(netx_graph) #pos = nx.nx_agraph.graphviz_layout(netx_graph) pos = nx.pydot_layout(netx_graph) node_color = [pt.NEUTRAL] * len(pos) drawkw = dict(pos=pos, ax=ax, with_labels=True, node_color=node_color, node_size=2000) nx.draw(netx_graph, **drawkw) if kwargs.get('show_title', True): pt.set_figtitle('Junction / Clique Tree / Cluster Graph')
def label_ticks(label_texts): import plottool as pt truncated_labels = [repr(lbl[0:100]) for lbl in label_texts] ax = pt.gca() ax.set_xticks(list(range(len(label_texts)))) ax.set_xticklabels(truncated_labels) [lbl.set_rotation(-55) for lbl in ax.get_xticklabels()] [ lbl.set_horizontalalignment('left') for lbl in ax.get_xticklabels() ] #xgrid, ygrid = np.meshgrid(range(len(label_texts)), range(len(label_texts))) #pt.plot_surface3d(xgrid, ygrid, disjoint_mat) ax.set_yticks(list(range(len(label_texts)))) ax.set_yticklabels(truncated_labels) [ lbl.set_horizontalalignment('right') for lbl in ax.get_yticklabels() ] [ lbl.set_verticalalignment('center') for lbl in ax.get_yticklabels() ]
def testshow_extramargin_info(gfpath, bbox_gs, theta, new_size, halfoffset_ms, mbbox_gs, margin_size): import plottool as pt import vtool as vt imgBGR = vt.imread(gfpath) chipBGR = compute_chip(gfpath, bbox_gs, theta, new_size, []) mchipBGR = compute_chip(gfpath, mbbox_gs, theta, margin_size, []) #index = 0 w_cs, h_cs = new_size xo_ms, yo_ms = halfoffset_ms bbox_ms = [xo_ms, yo_ms, w_cs, h_cs] verts_gs = vt.scaled_verts_from_bbox(bbox_gs, theta, 1, 1) expanded_verts_gs = vt.scaled_verts_from_bbox(mbbox_gs, theta, 1, 1) expanded_verts_ms = vt.scaled_verts_from_bbox(bbox_ms, 0, 1, 1) # topheavy imgBGR = vt.draw_verts(imgBGR, verts_gs) imgBGR = vt.draw_verts(imgBGR, expanded_verts_gs) mchipBGR = vt.draw_verts(mchipBGR, expanded_verts_ms) fnum = 1 pt.imshow(imgBGR, pnum=(1, 3, 1), fnum=fnum, title='original image') pt.gca().set_xlabel(str(imgBGR.shape)) pt.imshow(chipBGR, pnum=(1, 3, 2), fnum=fnum, title='original chip') pt.gca().set_xlabel(str(chipBGR.shape)) pt.imshow( mchipBGR, pnum=(1, 3, 3), fnum=fnum, title='scaled chip with expanded margin.\n(orig margin drawn in orange)' ) pt.gca().set_xlabel(str(mchipBGR.shape)) pt.show_if_requested()
def annotate_matches3(ibs, aid_list, bbox_list, offset_list, name_fm_list, name_fs_list, qreq_=None, **kwargs): """ TODO: use this as the main function. """ # TODO Use this function when you clean show_matches in_image = kwargs.get('in_image', False) #show_query = kwargs.get('show_query', True) draw_border = kwargs.get('draw_border', True) draw_lbl = kwargs.get('draw_lbl', True) notitle = kwargs.get('notitle', False) # List of annotation scores for each annot in the name #printDBG('[viz] annotate_matches3()') #truth = ibs.get_match_truth(aid1, aid2) #name_equality = ( # np.array(ibs.get_annot_nids(aid_list[1:])) == ibs.get_annot_nids(aid_list[0]) #).tolist() #truth = 1 if all(name_equality) else (2 if any(name_equality) else 0) #truth_color = vh.get_truth_color(truth) ## Build title #score = kwargs.pop('score', None) #rawscore = kwargs.pop('rawscore', None) #aid2_raw_rank = kwargs.pop('aid2_raw_rank', None) #print(kwargs) #title = vh.get_query_text(ibs, None, aid2, truth, qaid=aid1, **kwargs) # Build xlbl ax = pt.gca() ph.set_plotdat(ax, 'viztype', 'multi_match') ph.set_plotdat(ax, 'qaid', aid_list[0]) ph.set_plotdat(ax, 'num_matches', len(aid_list) - 1) ph.set_plotdat(ax, 'aid_list', aid_list[1:]) for count, aid in enumerate(aid_list, start=1): ph.set_plotdat(ax, 'aid%d' % (count,), aid) #name_equality = (ibs.get_annot_nids(aid_list[0]) == # np.array(ibs.get_annot_nids(aid_list[1:]))) #truth = 1 if np.all(name_equality) else (2 if np.any(name_equality) else 0) truth = get_multitruth(ibs, aid_list) if any(ibs.is_aid_unknown(aid_list[1:])) or ibs.is_aid_unknown(aid_list[0]): truth = ibs.const.TRUTH_UNKNOWN truth_color = vh.get_truth_color(truth) name_annot_scores = kwargs.get('name_annot_scores', None) if len(aid_list) == 2: # HACK; generalize to multple annots title = vh.get_query_text(ibs, None, aid_list[1], truth, qaid=aid_list[0], **kwargs) if not notitle: pt.set_title(title, ax) if draw_lbl: # Build labels nid_list = ibs.get_annot_nids(aid_list, distinguish_unknowns=False) name_list = ibs.get_annot_names(aid_list) lbls_list = [[] for _ in range(len(aid_list))] if kwargs.get('show_name', False): for count, (lbls, name) in enumerate(zip(lbls_list, name_list)): lbls.append(ut.repr2((name))) if kwargs.get('show_nid', True): for count, (lbls, nid) in enumerate(zip(lbls_list, nid_list)): # only label the first two images with nids LABEL_ALL_NIDS = False if count <= 1 or LABEL_ALL_NIDS: #lbls.append(vh.get_nidstrs(nid)) lbls.append(('q' if count == 0 else '') + vh.get_nidstrs(nid)) if kwargs.get('show_aid', True): for count, (lbls, aid) in enumerate(zip(lbls_list, aid_list)): lbls.append(('q' if count == 0 else '') + vh.get_aidstrs(aid)) if (kwargs.get('show_annot_score', True) and name_annot_scores is not None): max_digits = kwargs.get('score_precision', None) for (lbls, score) in zip(lbls_list[1:], name_annot_scores): lbls.append(ut.num_fmt(score, max_digits=max_digits)) lbl_list = [' : '.join(lbls) for lbls in lbls_list] else: lbl_list = [None] * len(aid_list) #pt.set_title(title, ax) # Plot annotations over images if in_image: in_image_bbox_list = vh.get_bboxes(ibs, aid_list, offset_list) in_image_theta_list = ibs.get_annot_thetas(aid_list) # HACK! #if show_query: # pt.draw_bbox(bbox1, bbox_color=pt.ORANGE, lbl=lbl1, theta=theta1) bbox_color = pt.ORANGE bbox_color = truth_color if draw_border else pt.ORANGE for bbox, theta, lbl in zip(in_image_bbox_list, in_image_theta_list, lbl_list): pt.draw_bbox(bbox, bbox_color=bbox_color, lbl=lbl, theta=theta) pass else: xy, w, h = pt.get_axis_xy_width_height(ax) #theta2 = 0 #if xywh2 is None: # #xywh2 = (xy[0], xy[1], w, h) # # weird when sidebyside is off y seems to be inverted # xywh2 = (0, 0, w, h) #if not show_query and xywh1 is None: # data_config2 = None if qreq_ is None else # qreq_.get_external_data_config2() # kpts2 = ibs.get_annot_kpts([aid2], config2_=data_config2)[0] # #pt.draw_kpts2(kpts2.take(fm.T[1], axis=0)) # # Draw any selected matches # #sm_kw = dict(rect=True, colors=pt.BLUE) # pt.plot_fmatch(None, xywh2, None, kpts2, fm, fs=fs, **kwargs) #if draw_border: # pt.draw_border(ax, truth_color, 4, offset=offset2) if draw_border: pt.draw_border(ax, color=truth_color, lw=4) if draw_lbl: # Custom user lbl for chips 1 and 2 #if show_query: # (x1, y1, w1, h1) = xywh1 # pt.absolute_lbl(x1 + w1, y1, lbl1) for bbox, lbl in zip(bbox_list, lbl_list): (x, y, w, h) = bbox pt.absolute_lbl(x + w, y, lbl) # No matches draw a red box if True: no_matches = name_fm_list is None or all([True if fm is None else len(fm) == 0 for fm in name_fm_list]) if no_matches: xy, w, h = pt.get_axis_xy_width_height(ax) #axes_bbox = (xy[0], xy[1], w, h) if draw_border: pass
def draw_bayesian_model(model, evidence={}, soft_evidence={}, fnum=None, pnum=None, **kwargs): from pgmpy.models import BayesianModel if not isinstance(model, BayesianModel): model = model.to_bayesian_model() import plottool as pt import networkx as nx kwargs = kwargs.copy() factor_list = kwargs.pop('factor_list', []) ttype_colors, ttype_scalars = make_colorcodes(model) textprops = { 'horizontalalignment': 'left', 'family': 'monospace', 'size': 8, } # build graph attrs tup = get_node_viz_attrs( model, evidence, soft_evidence, factor_list, ttype_colors, **kwargs) node_color, pos_list, pos_dict, takws = tup # draw graph has_infered = evidence or 'factor_list' in kwargs if False: fig = pt.figure(fnum=fnum, pnum=pnum, doclf=True) # NOQA ax = pt.gca() drawkw = dict(pos=pos_dict, ax=ax, with_labels=True, node_size=1100, node_color=node_color) nx.draw(model, **drawkw) else: # BE VERY CAREFUL if 1: graph = model.copy() graph.__class__ = nx.DiGraph graph.graph['groupattrs'] = ut.ddict(dict) #graph = model. if getattr(graph, 'ttype2_cpds', None) is not None: # Add invis edges and ttype groups for ttype in model.ttype2_cpds.keys(): ttype_cpds = model.ttype2_cpds[ttype] # use defined ordering ttype_nodes = ut.list_getattr(ttype_cpds, 'variable') # ttype_nodes = sorted(ttype_nodes) invis_edges = list(ut.itertwo(ttype_nodes)) graph.add_edges_from(invis_edges) nx.set_edge_attributes(graph, 'style', {edge: 'invis' for edge in invis_edges}) nx.set_node_attributes(graph, 'groupid', {node: ttype for node in ttype_nodes}) graph.graph['groupattrs'][ttype]['rank'] = 'same' graph.graph['groupattrs'][ttype]['cluster'] = False else: graph = model pt.show_nx(graph, layout_kw={'prog': 'dot'}, fnum=fnum, pnum=pnum, verbose=0) pt.zoom_factory() fig = pt.gcf() ax = pt.gca() pass hacks = [pt.draw_text_annotations(textprops=textprops, **takw) for takw in takws if takw] xmin, ymin = np.array(pos_list).min(axis=0) xmax, ymax = np.array(pos_list).max(axis=0) if 'name' in model.ttype2_template: num_names = len(model.ttype2_template['name'].basis) num_annots = len(model.ttype2_cpds['name']) if num_annots > 4: ax.set_xlim((xmin - 40, xmax + 40)) ax.set_ylim((ymin - 50, ymax + 50)) fig.set_size_inches(30, 7) else: ax.set_xlim((xmin - 42, xmax + 42)) ax.set_ylim((ymin - 50, ymax + 50)) fig.set_size_inches(23, 7) title = 'num_names=%r, num_annots=%r' % (num_names, num_annots,) else: title = '' map_assign = kwargs.get('map_assign', None) def word_insert(text): return '' if len(text) == 0 else text + ' ' top_assignments = kwargs.get('top_assignments', None) if top_assignments is not None: map_assign, map_prob = top_assignments[0] if map_assign is not None: title += '\n%sMAP: ' % (word_insert(kwargs.get('method', ''))) title += map_assign + ' @' + '%.2f%%' % (100 * map_prob,) if kwargs.get('show_title', True): pt.set_figtitle(title, size=14) for hack in hacks: hack() if has_infered: # Hack in colorbars # if ut.list_type(basis) is int: # pt.colorbar(scalars, colors, lbl='score', ticklabels=np.array(basis) + 1) # else: # pt.colorbar(scalars, colors, lbl='score', ticklabels=basis) keys = ['name', 'score'] locs = ['left', 'right'] for key, loc in zip(keys, locs): if key in ttype_colors: basis = model.ttype2_template[key].basis # scalars = colors = ttype_colors[key] scalars = ttype_scalars[key] pt.colorbar(scalars, colors, lbl=key, ticklabels=basis, ticklocation=loc)
def get_iters_vs_miou(harn): from pysseg.util import jsonutil import pysseg.backend.iface_caffe as iface harn.prepare_test_model() test_weight_dpaths = harn.find_test_weights_dpaths() # for test_weights_dpath in test_weight_dpaths: # harn.test_weights_dpath = test_weights_dpath # harn.test_weights_fpath = ub.readfrom(join(test_weights_dpath, 'test_weights.caffemodel.lnk')) # # if not exists(join(harn.test_weights_dpath, 'pred')): # results_fpath = join(harn.test_weights_dpath, 'results.json') # if exists(results_fpath): # results = json.load(results_fpath) iter_results = {} for test_weights_dpath in test_weight_dpaths: results_fpath = join(test_weights_dpath, 'results.json') if exists(results_fpath): iterno = iface.snapshot_iterno(test_weights_dpath) results = json.load(open(results_fpath, 'r')) ious = eval(results['ious']) iter_results[iterno] = ious iter_df = pd.DataFrame(iter_results) iter_df.columns.name = 'iterno' iter_df.index.name = 'class' fpath = join(harn.test_dpath, 'iter_ious.json') jsonutil.write_json(fpath, iter_df) iter_df = iter_df.drop([57], axis=1) iter_df.drop(harn.task.ignore_classnames).mean(axis=0) if False: """ ffmpeg -y -f image2 -i ~/aretha/store/data/work/camvid/arch/segnet_proper/test/input_nqmmrhd/weights_abvroyo_segnet_proper_None_xwfmwfo_00040000/blend_pred/%*.png -crf 25 -vcodec libx264 -vf "setpts=4*PTS" camvid-results.avi ffmpeg -y -f image2 -i out_haul83/%*.png -vcodec mpeg4 -vf "setpts=10*PTS" haul83-results.avi """ # move to computer with plottool iter_df = pd.read_json( '/home/joncrall/aretha/store/data/work/camvid/arch/segnet_proper/test/input_nqmmrhd/iter_ious.json' ) import plottool as pt pt.qtensure() from pysseg.tasks import CamVid task = CamVid() iter_miou = iter_df.drop(task.ignore_classnames).mean(axis=0) iter_miou = iter_miou.sort_index() _set_mpl_rcparams() fig = pt.figure(fnum=1, pnum=(1, 1, 1)) ax = pt.gca() iter_miou.plot(ax=ax) ax.set_xlabel('train iters') ax.set_ylabel('test mIoU') ax.set_title('Reproduced CamVid Results (init using VGG)') ub.ensuredir('result_plots') from pysseg.draw import render_figure_to_image import cv2 cv2.imwrite('result_plots/miou.png', render_figure_to_image(fig, dpi=100, transparent=True)) fig = pt.figure(fnum=2, pnum=(1, 1, 1)) ax = pt.gca() iter_iou = iter_df.drop(task.ignore_classnames).T.sort_index() # sort by results iter_iou = iter_iou[iter_iou.iloc[-1].sort_values().index[::-1]] colors = [ tuple(np.array(v[::-1]) / 255) + (1, ) for v in ub.take(task.class_colors, iter_iou.columns) ] iter_iou.plot(ax=ax, colors=colors, lw=4) ax.set_xlabel('train iters') ax.set_ylabel('test IoU') ax.set_title('Reproduced CamVid Results (init using VGG)') ub.ensuredir('result_plots') from pysseg.draw import render_figure_to_image cv2.imwrite('result_plots/perclass_iou.png', render_figure_to_image(fig, dpi=100, transparent=True))
def show_time_distributions(ibs, unixtime_list): r""" """ #import vtool as vt import plottool as pt unixtime_list = np.array(unixtime_list) num_nan = np.isnan(unixtime_list).sum() num_total = len(unixtime_list) unixtime_list = unixtime_list[~np.isnan(unixtime_list)] if False: from matplotlib import dates as mpldates #data_list = list(map(ut.unixtime_to_datetimeobj, unixtime_list)) n, bins, patches = pt.plt.hist(unixtime_list, 365) #n_ = list(map(ut.unixtime_to_datetimeobj, n)) #bins_ = list(map(ut.unixtime_to_datetimeobj, bins)) pt.plt.setp(patches, 'facecolor', 'g', 'alpha', 0.75) ax = pt.gca() #ax.xaxis.set_major_locator(mpldates.YearLocator()) #hfmt = mpldates.DateFormatter('%y/%m/%d') #ax.xaxis.set_major_formatter(hfmt) mpldates.num2date(unixtime_list) #pt.gcf().autofmt_xdate() #y = pt.plt.normpdf( bins, unixtime_list.mean(), unixtime_list.std()) #ax.set_xticks(bins_) #l = pt.plt.plot(bins_, y, 'k--', linewidth=1.5) else: pt.draw_time_distribution(unixtime_list) #pt.draw_histogram() ax = pt.gca() ax.set_xlabel('Date') ax.set_title('Timestamp distribution of %s. #nan=%d/%d' % ( ibs.get_dbname_alias(), num_nan, num_total)) pt.gcf().autofmt_xdate() icon = ibs.get_database_icon() if icon is not None: #import matplotlib as mpl #import vtool as vt ax = pt.gca() # Overlay a species icon # http://matplotlib.org/examples/pylab_examples/demo_annotation_box.html #icon = vt.convert_image_list_colorspace([icon], 'RGB', 'BGR')[0] pt.overlay_icon(icon, coords=(0, 1), bbox_alignment=(0, 1)) #imagebox = mpl.offsetbox.OffsetImage(icon, zoom=1.0) ##xy = [ax.get_xlim()[0] + 5, ax.get_ylim()[1]] ##ax.set_xlim(1, 100) ##ax.set_ylim(0, 100) ##x = np.array(ax.get_xlim()).sum() / 2 ##y = np.array(ax.get_ylim()).sum() / 2 ##xy = [x, y] ##print('xy = %r' % (xy,)) ##x = np.nanmin(unixtime_list) ##xy = [x, y] ##print('xy = %r' % (xy,)) ##ax.get_ylim()[0]] #xy = [ax.get_xlim()[0], ax.get_ylim()[1]] #ab = mpl.offsetbox.AnnotationBbox( # imagebox, xy, xycoords='data', # xybox=(-0., 0.), # boxcoords="offset points", # box_alignment=(0, 1), pad=0.0) #ax.add_artist(ab) if ut.get_argflag('--contextadjust'): #pt.adjust_subplots2(left=.08, bottom=.1, top=.9, wspace=.3, hspace=.1) pt.adjust_subplots2(use_argv=True)
def netx_draw_images_at_positions(img_list, pos_list, zoom=.4): """ References: https://gist.github.com/shobhit/3236373 http://matplotlib.org/examples/pylab_examples/demo_annotation_box.html http://matplotlib.org/api/text_api.html http://matplotlib.org/api/offsetbox_api.html TODO: look into DraggableAnnotation """ from matplotlib.offsetbox import OffsetImage, AnnotationBbox print('[viz_graph] drawing %d images' % len(img_list)) # Thumb stackartist ax = pt.gca() artist_list = [] offset_img_list = [] for pos, img in zip(pos_list, img_list): x, y = pos height, width = img.shape[0:2] offset_img = OffsetImage(img, zoom=zoom) artist = AnnotationBbox( offset_img, (x, y), xybox=(-0., 0.), xycoords='data', boxcoords="offset points", #pad=0.1, pad=0.25, #frameon=False, frameon=True, #bboxprops=dict(fc="cyan"), ) # ,arrowprops=dict(arrowstyle="->")) offset_img_list.append(offset_img) artist_list.append(artist) for artist in artist_list: ax.add_artist(artist) # TODO: move this to the interaction def _onresize(event): print('foo' + ut.get_timestamp()) def zoom_factory(ax, base_scale=1.1): """ References: https://gist.github.com/tacaswell/3144287 """ def zoom_fun(event): #print('zooming') # get the current x and y limits cur_xlim = ax.get_xlim() cur_ylim = ax.get_ylim() # set the range #cur_xrange = (cur_xlim[1] - cur_xlim[0]) * .5 #cur_yrange = (cur_ylim[1] - cur_ylim[0]) * .5 xdata = event.xdata # get event x location ydata = event.ydata # get event y location if xdata is None or ydata is None: return if event.button == 'up': # deal with zoom in scale_factor = 1 / base_scale elif event.button == 'down': # deal with zoom out scale_factor = base_scale else: raise NotImplementedError('event.button=%r' % (event.button,)) # deal with something that should never happen scale_factor = 1 print(event.button) # set new limits #ax.set_xlim([xdata - cur_xrange * scale_factor, # xdata + cur_xrange * scale_factor]) #ax.set_ylim([ydata - cur_yrange * scale_factor, # ydata + cur_yrange * scale_factor]) # ---- for offset_img in offset_img_list: zoom = offset_img.get_zoom() offset_img.set_zoom(zoom / (scale_factor ** (1.2))) # Get distance from the cursor to the edge of the figure frame x_left = xdata - cur_xlim[0] x_right = cur_xlim[1] - xdata y_top = ydata - cur_ylim[0] y_bottom = cur_ylim[1] - ydata ax.set_xlim([xdata - x_left * scale_factor, xdata + x_right * scale_factor]) ax.set_ylim([ydata - y_top * scale_factor, ydata + y_bottom * scale_factor]) # ---- ax.figure.canvas.draw() # force re-draw fig = ax.get_figure() # get the figure of interest # attach the call back fig.canvas.mpl_connect('scroll_event', zoom_fun) #return the function return zoom_fun #pt.interact_helpers.connect_callback(fig, 'resize_event', _onresize) zoom_factory(ax) return artist_list
def show_model(model, evidence={}, soft_evidence={}, **kwargs): """ References: http://stackoverflow.com/questions/22207802/pygraphviz-networkx-set-node-level-or-layer Ignore: pkg-config --libs-only-L libcgraph sudo apt-get install libgraphviz-dev -y sudo apt-get install libgraphviz4 -y # sudo apt-get install pkg-config sudo apt-get install libgraphviz-dev # pip install git+git://github.com/pygraphviz/pygraphviz.git pip install pygraphviz python -c "import pygraphviz; print(pygraphviz.__file__)" sudo pip3 install pygraphviz --install-option="--include-path=/usr/include/graphviz" --install-option="--library-path=/usr/lib/graphviz/" python3 -c "import pygraphviz; print(pygraphviz.__file__)" """ if ut.get_argval('--hackmarkov') or ut.get_argval('--hackjunc'): draw_tree_model(model, **kwargs) return import plottool as pt import networkx as netx import matplotlib as mpl fnum = pt.ensure_fnum(None) fig = pt.figure(fnum=fnum, pnum=(3, 1, (slice(0, 2), 0)), doclf=True) # NOQA #fig = pt.figure(fnum=fnum, pnum=(3, 2, (1, slice(1, 2))), doclf=True) # NOQA ax = pt.gca() var2_post = {f.variables[0]: f for f in kwargs.get('factor_list', [])} netx_graph = (model) #netx_graph.graph.setdefault('graph', {})['size'] = '"10,5"' #netx_graph.graph.setdefault('graph', {})['rankdir'] = 'LR' pos = get_hacked_pos(netx_graph) #netx.nx_agraph.pygraphviz_layout(netx_graph) #pos = netx.nx_agraph.pydot_layout(netx_graph, prog='dot') #pos = netx.nx_agraph.graphviz_layout(netx_graph) drawkw = dict(pos=pos, ax=ax, with_labels=True, node_size=1500) if evidence is not None: node_colors = [ # (pt.TRUE_BLUE (pt.WHITE if node not in soft_evidence else pt.LIGHT_PINK) if node not in evidence else pt.FALSE_RED for node in netx_graph.nodes() ] for node in netx_graph.nodes(): cpd = model.var2_cpd[node] if cpd.ttype == 'score': pass drawkw['node_color'] = node_colors netx.draw(netx_graph, **drawkw) show_probs = True if show_probs: textprops = { 'family': 'monospace', 'horizontalalignment': 'left', #'horizontalalignment': 'center', #'size': 12, 'size': 8, } textkw = dict( xycoords='data', boxcoords='offset points', pad=0.25, framewidth=True, arrowprops=dict(arrowstyle='->'), #bboxprops=dict(fc=node_attr['fillcolor']), ) netx_nodes = model.nodes(data=True) node_key_list = ut.get_list_column(netx_nodes, 0) pos_list = ut.dict_take(pos, node_key_list) artist_list = [] offset_box_list = [] for pos_, node in zip(pos_list, netx_nodes): x, y = pos_ variable = node[0] cpd = model.var2_cpd[variable] prior_marg = (cpd if cpd.evidence is None else cpd.marginalize( cpd.evidence, inplace=False)) prior_text = None text = None if variable in evidence: text = cpd.variable_statenames[evidence[variable]] elif variable in var2_post: post_marg = var2_post[variable] text = pgm_ext.make_factor_text(post_marg, 'post') prior_text = pgm_ext.make_factor_text(prior_marg, 'prior') else: if len(evidence) == 0 and len(soft_evidence) == 0: prior_text = pgm_ext.make_factor_text(prior_marg, 'prior') show_post = kwargs.get('show_post', False) show_prior = kwargs.get('show_prior', False) show_prior = True show_post = True show_ev = (evidence is not None and variable in evidence) if (show_post or show_ev) and text is not None: offset_box = mpl.offsetbox.TextArea(text, textprops) artist = mpl.offsetbox.AnnotationBbox( # offset_box, (x + 5, y), xybox=(20., 5.), offset_box, (x, y + 5), xybox=(4., 20.), #box_alignment=(0, 0), box_alignment=(.5, 0), **textkw) offset_box_list.append(offset_box) artist_list.append(artist) if show_prior and prior_text is not None: offset_box2 = mpl.offsetbox.TextArea(prior_text, textprops) artist2 = mpl.offsetbox.AnnotationBbox( # offset_box2, (x - 5, y), xybox=(-20., -15.), # offset_box2, (x, y - 5), xybox=(-15., -20.), offset_box2, (x, y - 5), xybox=(-4, -20.), #box_alignment=(1, 1), box_alignment=(.5, 1), **textkw) offset_box_list.append(offset_box2) artist_list.append(artist2) for artist in artist_list: ax.add_artist(artist) xmin, ymin = np.array(pos_list).min(axis=0) xmax, ymax = np.array(pos_list).max(axis=0) num_annots = len(model.ttype2_cpds['name']) if num_annots > 4: ax.set_xlim((xmin - 40, xmax + 40)) ax.set_ylim((ymin - 50, ymax + 50)) fig.set_size_inches(30, 7) else: ax.set_xlim((xmin - 42, xmax + 42)) ax.set_ylim((ymin - 50, ymax + 50)) fig.set_size_inches(23, 7) fig = pt.gcf() title = 'num_names=%r, num_annots=%r' % ( model.num_names, num_annots, ) map_assign = kwargs.get('map_assign', None) #max_marginal_list = [] #for name, marginal in marginalized_joints.items(): # states = list(ut.iprod(*marginal.statenames)) # vals = marginal.values.ravel() # x = vals.argmax() # max_marginal_list += ['P(' + ', '.join(states[x]) + ') = ' + str(vals[x])] # title += str(marginal) top_assignments = kwargs.get('top_assignments', None) if top_assignments is not None: map_assign, map_prob = top_assignments[0] if map_assign is not None: # title += '\nMAP=' + ut.repr2(map_assign, strvals=True) title += '\nMAP: ' + map_assign + ' @' + '%.2f%%' % ( 100 * map_prob, ) if kwargs.get('show_title', True): pt.set_figtitle(title, size=14) #pt.set_xlabel() def hack_fix_centeralign(): if textprops['horizontalalignment'] == 'center': print('Fixing centeralign') fig = pt.gcf() fig.canvas.draw() # Superhack for centered text. Fix bug in # /usr/local/lib/python2.7/dist-packages/matplotlib/offsetbox.py # /usr/local/lib/python2.7/dist-packages/matplotlib/text.py for offset_box in offset_box_list: offset_box.set_offset z = offset_box._text.get_window_extent() (z.x1 - z.x0) / 2 offset_box._text T = offset_box._text.get_transform() A = mpl.transforms.Affine2D() A.clear() A.translate((z.x1 - z.x0) / 2, 0) offset_box._text.set_transform(T + A) hack_fix_centeralign() top_assignments = kwargs.get('top_assignments', None) if top_assignments is not None: bin_labels = ut.get_list_column(top_assignments, 0) bin_vals = ut.get_list_column(top_assignments, 1) # bin_labels = ['\n'.join(ut.textwrap.wrap(_lbl, width=30)) for _lbl in bin_labels] pt.draw_histogram( bin_labels, bin_vals, fnum=fnum, pnum=(3, 8, (2, slice(4, None))), transpose=True, use_darkbackground=False, #xtick_rotation=-10, ylabel='Prob', xlabel='assignment') pt.set_title('Assignment probabilities')
def show_chip(ibs, aid, in_image=False, annote=True, title_suffix='', weight_label=None, weights=None, config2_=None, **kwargs): r""" Driver function to show chips Args: ibs (ibeis.IBEISController): aid (int): annotation rowid in_image (bool): displays annotation with the context of its source image annote (bool): enables overlay annoations title_suffix (str): weight_label (None): (default = None) weights (None): (default = None) config2_ (dict): (default = None) Kwargs: enable_chip_title_prefix, nokpts, kpts_subset, kpts, text_color, notitle, draw_lbls, show_aidstr, show_gname, show_name, show_nid, show_exemplar, show_num_gt, show_quality_text, show_yawtext, fnum, title, figtitle, pnum, interpolation, cmap, heatmap, data_colorbar, darken, update, xlabel, redraw_image, ax, alpha, docla, doclf, projection, use_gridspec, pts, ell color (3/4-tuple, ndarray, or str): colors for keypoints CommandLine: python -m ibeis.viz.viz_chip --test-show_chip --show --ecc python -c "import utool as ut; ut.print_auto_docstr('ibeis.viz.viz_chip', 'show_chip')" python -m ibeis.viz.viz_chip --test-show_chip --show --db NNP_Master3 --aids 14047 --no-annote python -m ibeis.viz.viz_chip --test-show_chip --show --db NNP_Master3 --aids 14047 --no-annote python -m ibeis.viz.viz_chip --test-show_chip --show --db PZ_MTEST --aid 1 --bgmethod=cnn python -m ibeis.viz.viz_chip --test-show_chip --show --db PZ_MTEST --aid 1 --bgmethod=cnn --scale_max=30 Example: >>> # VIZ_TEST >>> from ibeis.viz.viz_chip import * # NOQA >>> import numpy as np >>> import vtool as vt >>> in_image = False >>> ibs, aid_list, kwargs, config2_ = testdata_showchip() >>> aid = aid_list[0] >>> if ut.get_argflag('--ecc'): >>> kpts = ibs.get_annot_kpts(aid, config2_=config2_) >>> weights = ibs.get_annot_fgweights([aid], ensure=True, config2_=config2_)[0] >>> kpts = ut.random_sample(kpts[weights > .9], 200, seed=0) >>> ecc = vt.get_kpts_eccentricity(kpts) >>> scale = 1 / vt.get_scales(kpts) >>> s = ecc if config2_.affine_invariance else scale >>> colors = pt.scores_to_color(s, cmap_='jet') >>> kwargs['color'] = colors >>> kwargs['kpts'] = kpts >>> show_chip(ibs, aid, in_image=in_image, config2_=config2_, **kwargs) >>> pt.show_if_requested() """ if ut.VERBOSE: print('[viz] show_chip(aid=%r)' % (aid, )) #ibs.assert_valid_aids((aid,)) # Get chip #print('in_image = %r' % (in_image,)) chip = vh.get_chips(ibs, aid, in_image=in_image, config2_=config2_) # Create chip title chip_text = vh.get_annot_texts(ibs, [aid], **kwargs)[0] if kwargs.get('enable_chip_title_prefix', True): chip_title_text = chip_text + title_suffix else: chip_title_text = title_suffix chip_title_text = chip_title_text.strip('\n') # Draw chip fig, ax = pt.imshow(chip, **kwargs) # Populate axis user data vh.set_ibsdat(ax, 'viztype', 'chip') vh.set_ibsdat(ax, 'aid', aid) if annote and not kwargs.get('nokpts', False): # Get and draw keypoints if 'color' not in kwargs: if weight_label == 'fg_weights': if weights is None and ibs.has_species_detector( ibs.get_annot_species_texts(aid)): weight_label = 'fg_weights' weights = ibs.get_annot_fgweights([aid], ensure=True, config2_=config2_)[0] if weights is not None: cmap_ = 'hot' #if weight_label == 'dstncvs': # cmap_ = 'rainbow' color = pt.scores_to_color(weights, cmap_=cmap_, reverse_cmap=False) kwargs['color'] = color kwargs['ell_color'] = color kwargs['pts_color'] = color kpts_ = vh.get_kpts(ibs, aid, in_image, config2_=config2_, kpts_subset=kwargs.get('kpts_subset', None), kpts=kwargs.get('kpts', None)) try: del kwargs['kpts'] except KeyError: pass pt.viz_keypoints._annotate_kpts(kpts_, **kwargs) if not ut.get_argflag('--noaidlabel'): pt.upperleft_text(chip_text, color=kwargs.get('text_color', None)) use_title = not kwargs.get('notitle', False) if use_title: pt.set_title(chip_title_text) if in_image: gid = ibs.get_annot_gids(aid) aid_list = ibs.get_image_aids(gid) annotekw = viz_image.get_annot_annotations(ibs, aid_list, sel_aids=[aid], draw_lbls=kwargs.get( 'draw_lbls', True)) # Put annotation centers in the axis ph.set_plotdat(ax, 'annotation_bbox_list', annotekw['bbox_list']) ph.set_plotdat(ax, 'aid_list', aid_list) pt.viz_image2.draw_image_overlay(ax, **annotekw) zoom_ = ut.get_argval('--zoom', type_=float, default=None) if zoom_ is not None: import vtool as vt # Zoom into the chip for some image context rotated_verts = ibs.get_annot_rotated_verts(aid) bbox = ibs.get_annot_bboxes(aid) #print(bbox) #print(rotated_verts) rotated_bbox = vt.bbox_from_verts(rotated_verts) imgw, imgh = ibs.get_image_sizes(gid) pad_factor = zoom_ pad_length = min(bbox[2], bbox[3]) * pad_factor minx = max(rotated_bbox[0] - pad_length, 0) miny = max(rotated_bbox[1] - pad_length, 0) maxx = min((rotated_bbox[0] + rotated_bbox[2]) + pad_length, imgw) maxy = min((rotated_bbox[1] + rotated_bbox[3]) + pad_length, imgh) #maxy = imgh - maxy #miny = imgh - miny ax = pt.gca() ax.set_xlim(minx, maxx) ax.set_ylim(miny, maxy) ax.invert_yaxis() else: ph.set_plotdat(ax, 'chipshape', chip.shape) #if 'featweights' in vars() and 'color' in kwargs: if weights is not None and weight_label is not None: ## HACK HACK HACK if len(weights) > 0: cb = pt.colorbar(weights, kwargs['color']) cb.set_label(weight_label) return fig, ax
def draw_markov_model(model, fnum=None, **kwargs): import plottool as pt fnum = pt.ensure_fnum(fnum) pt.figure(fnum=fnum, doclf=True) ax = pt.gca() from pgmpy.models import MarkovModel if isinstance(model, MarkovModel): markovmodel = model else: markovmodel = model.to_markov_model() # pos = nx.nx_agraph.pydot_layout(markovmodel) pos = nx.nx_agraph.pygraphviz_layout(markovmodel) # Referenecs: # https://groups.google.com/forum/#!topic/networkx-discuss/FwYk0ixLDuY # pos = nx.spring_layout(markovmodel) # pos = nx.circular_layout(markovmodel) # curved-arrow # markovmodel.edge_attr['curved-arrow'] = True # markovmodel.graph.setdefault('edge', {})['splines'] = 'curved' # markovmodel.graph.setdefault('graph', {})['splines'] = 'curved' # markovmodel.graph.setdefault('edge', {})['splines'] = 'curved' node_color = [pt.NEUTRAL] * len(pos) drawkw = dict( pos=pos, ax=ax, with_labels=True, node_color=node_color, # NOQA node_size=1100) from matplotlib.patches import FancyArrowPatch, Circle import numpy as np def draw_network(G, pos, ax, sg=None): for n in G: c = Circle(pos[n], radius=10, alpha=0.5, color=pt.NEUTRAL_BLUE) ax.add_patch(c) G.node[n]['patch'] = c x, y = pos[n] pt.ax_absolute_text(x, y, n, ha='center', va='center') seen = {} for (u, v, d) in G.edges(data=True): n1 = G.node[u]['patch'] n2 = G.node[v]['patch'] rad = 0.1 if (u, v) in seen: rad = seen.get((u, v)) rad = (rad + np.sign(rad) * 0.1) * -1 alpha = 0.5 color = 'k' e = FancyArrowPatch( n1.center, n2.center, patchA=n1, patchB=n2, # arrowstyle='-|>', arrowstyle='-', connectionstyle='arc3,rad=%s' % rad, mutation_scale=10.0, lw=2, alpha=alpha, color=color) seen[(u, v)] = rad ax.add_patch(e) return e # nx.draw(markovmodel, **drawkw) draw_network(markovmodel, pos, ax) ax.autoscale() pt.plt.axis('equal') pt.plt.axis('off') if kwargs.get('show_title', True): pt.set_figtitle('Markov Model')
def plot_chip(self, aid, nRows, nCols, px, **kwargs): """ Plots an individual chip in a subaxis """ ibs = self.ibs enable_chip_title_prefix = ut.is_developer() #enable_chip_title_prefix = False if aid in self.comp_aids: score = self.cm.get_annot_scores([aid])[0] rawscore = self.cm.get_annot_scores([aid])[0] title_suf = kwargs.get('title_suffix', '') if score != rawscore: if score is None: title_suf += '\n score=____' else: title_suf += '\n score=%0.2f' % score title_suf += '\n rawscore=%0.2f' % rawscore else: title_suf = kwargs.get('title_suffix', '') if enable_chip_title_prefix: title_suf = '\n' + title_suf #nid = ibs.get_annot_name_rowids(aid) viz_chip_kw = { 'fnum': self.fnum, 'pnum': (nRows, nCols, px), 'nokpts': True, 'show_gname': False, 'show_exemplar': False, 'show_num_gt': False, 'show_gname': False, 'title_suffix': title_suf, # 'text_color': kwargs.get('color'), ### #'show_name': False, #'show_aidstr': False, 'enable_chip_title_prefix': enable_chip_title_prefix, 'show_name': True, 'show_aidstr': True, 'show_yawtext': True, 'show_quality_text': True, } viz_chip.show_chip(ibs, aid, **viz_chip_kw) ax = pt.gca() if kwargs.get('make_buttons', True): divider = pt.ensure_divider(ax) butkw = {'divider': divider, 'size': '13%'} self.aid2_ax = {} self.aid2_border = {} if aid in self.comp_aids: callback = partial(self.select, aid) self.append_button('Select This Animal', callback=callback, **butkw) #Hack to toggle colors if aid in self.aid_checkbox_states: #If we are selecting it, then make it green, otherwise change it back to grey if self.aid_checkbox_states[aid]: border = pt.draw_border(ax, color=(0, 1, 0), lw=4) else: border = pt.draw_border(ax, color=(.7, .7, .7), lw=4) self.aid2_border[aid] = border else: self.aid_checkbox_states[aid] = False self.append_button('Examine', callback=partial(self.examine, aid), **butkw)
def plot_chip(self, aid, nRows, nCols, px, fulldraw=True, **kwargs): """ Plots an individual chip in a subaxis """ ibs = self.ibs if aid in [self.aid1, self.aid2]: # Bold color for the matching chips lw = 5 text_color = np.array((135, 206, 235, 255)) / 255.0 else: lw = 2 text_color = None pnum = (nRows, nCols, px) if not fulldraw: # not doing full draw so we have to clear any axes # that are here already manually ax = self.fig.add_subplot(*pnum) self.clear_parent_axes(ax) #ut.embed() #print(subax) viz_chip_kw = { 'fnum': self.fnum, 'pnum': pnum, 'nokpts': True, 'show_name': True, 'show_gname': False, 'show_aidstr': True, 'notitle': True, 'show_num_gt': False, 'text_color': text_color, } if False and ut.is_developer(): enable_chip_title_prefix = True viz_chip_kw.update({ 'enable_chip_title_prefix': enable_chip_title_prefix, 'show_name': True, 'show_aidstr': True, 'show_viewcode': True, 'show_num_gt': True, 'show_quality_text': True, }) viz_chip.show_chip(ibs, aid, **viz_chip_kw) ax = pt.gca() pt.draw_border(ax, color=kwargs.get('color'), lw=lw) if kwargs.get('make_buttons', True): #divider = pt.ensure_divider(ax) butkw = { #'divider': divider, 'ax': ax, 'size': '13%' #'size': '15%' } # Chip matching/naming options nid = ibs.get_annot_name_rowids(aid) annotation_unknown = ibs.is_nid_unknown([nid])[0] if not annotation_unknown: # remove name callback = functools.partial(self.unname_annotation, aid) self.append_button('remove name (' + ibs.get_name_texts(nid) + ')', callback=callback, **butkw) else: # new name callback = functools.partial(self.mark_annotation_as_new_name, aid) self.append_button('mark as new name', callback=callback, **butkw) if nid != self.nid2 and not ibs.is_nid_unknown( [self.nid2])[0] and not self.is_split_case: # match to nid2 callback = functools.partial(self.rename_annotation, aid, self.nid2) text = 'match to name2: ' + ibs.get_name_texts(self.nid2) self.append_button(text, callback=callback, **butkw) if nid != self.nid1 and not ibs.is_nid_unknown([self.nid1])[0]: # match to nid1 callback = functools.partial(self.rename_annotation, aid, self.nid1) text = 'match to name1: ' + ibs.get_name_texts(self.nid1) self.append_button(text, callback=callback, **butkw) other_nid_list = self.get_other_nids() for other_nid in other_nid_list: if other_nid == nid: continue # rename nid2 callback = functools.partial(self.rename_annotation, aid, other_nid) text = 'match to: ' + ibs.get_name_texts(other_nid) self.append_button(text, callback=callback, **butkw) return ax
def show_name_matches(ibs, qaid, name_daid_list, name_fm_list, name_fs_list, name_H1_list, name_featflag_list, qreq_=None, **kwargs): """ Called from chip_match.py Args: ibs (IBEISController): ibeis controller object qaid (int): query annotation id name_daid_list (list): name_fm_list (list): name_fs_list (list): name_H1_list (list): name_featflag_list (list): qreq_ (QueryRequest): query request object with hyper-parameters(default = None) Kwargs: draw_fmatches, name_rank, fnum, pnum, colorbar_, nonvote_mode, fastmode, show_matches, fs, fm_norm, lbl1, lbl2, rect, draw_border, cmap, H1, H2, scale_factor1, scale_factor2, draw_pts, draw_ell, draw_lines, show_nMatches, all_kpts, in_image, show_query, draw_lbl, name_annot_scores, score, rawscore, aid2_raw_rank, show_name, show_nid, show_aid, show_annot_score, show_truth, name_score, show_name_score, show_name_rank, show_timedelta CommandLine: python -m ibeis.viz.viz_matches --exec-show_name_matches python -m ibeis.viz.viz_matches --test-show_name_matches --show Example: >>> # DISABLE_DOCTEST >>> from ibeis.viz.viz_matches import * # NOQA >>> from ibeis.algo.hots import chip_match >>> from ibeis.algo.hots import name_scoring >>> import vtool as vt >>> from ibeis.algo.hots import _pipeline_helpers as plh # NOQA >>> import numpy as np >>> func = chip_match.ChipMatch.show_single_namematch >>> sourcecode = ut.get_func_sourcecode(func, stripdef=True, stripret=True, >>> strip_docstr=True) >>> setup = ut.regex_replace('viz_matches.show_name_matches', '#', sourcecode) >>> homog = False >>> print(ut.indent(setup, '>>> ')) >>> ibs, qreq_, cm_list = plh.testdata_post_sver('PZ_MTEST', qaid_list=[1]) >>> cm = cm_list[0] >>> cm.score_nsum(qreq_) >>> dnid = ibs.get_annot_nids(cm.qaid) >>> # +--- COPIED SECTION >>> locals_ = locals() >>> var_list = ut.exec_func_src( >>> func, locals_=locals_, >>> sentinal='name_annot_scores = cm.annot_score_list.take(sorted_groupxs') >>> exec(ut.execstr_dict(var_list)) >>> # L___ COPIED SECTION >>> kwargs = {} >>> show_name_matches(ibs, qaid, name_daid_list, name_fm_list, >>> name_fs_list, name_h1_list, name_featflag_list, >>> qreq_=qreq_, **kwargs) >>> ut.quit_if_noshow() >>> ut.show_if_requested() """ #print("SHOW NAME MATCHES") #print(ut.repr2(kwargs, nl=True)) #from ibeis import constants as const from ibeis import tag_funcs draw_fmatches = kwargs.pop('draw_fmatches', True) rchip1, kpts1 = get_query_annot_pair_info(ibs, qaid, qreq_, draw_fmatches) rchip2_list, kpts2_list = get_data_annot_pair_info(ibs, name_daid_list, qreq_, draw_fmatches) fm_list = name_fm_list fs_list = name_fs_list featflag_list = name_featflag_list offset_list, sf_list, bbox_list = show_multichip_match(rchip1, rchip2_list, kpts1, kpts2_list, fm_list, fs_list, featflag_list, **kwargs) aid_list = [qaid] + name_daid_list annotate_matches3(ibs, aid_list, bbox_list, offset_list, name_fm_list, name_fs_list, qreq_=None, **kwargs) ax = pt.gca() title = vh.get_query_text(ibs, None, name_daid_list, False, qaid=qaid, **kwargs) pt.set_title(title, ax) # Case tags annotmatch_rowid_list = ibs.get_annotmatch_rowid_from_superkey( [qaid] * len(name_daid_list), name_daid_list) annotmatch_rowid_list = ut.filter_Nones(annotmatch_rowid_list) tags_list = ibs.get_annotmatch_case_tags(annotmatch_rowid_list) if not ut.get_argflag('--show'): # False: tags_list = tag_funcs.consolodate_annotmatch_tags(tags_list) tag_list = ut.unique_ordered(ut.flatten(tags_list)) name_rank = kwargs.get('name_rank', None) truth = get_multitruth(ibs, aid_list) xlabel = {1: 'Correct ID', 0: 'Incorrect ID', 2: 'Unknown ID'}[truth] if False: if name_rank is None: xlabel = {1: 'Genuine', 0: 'Imposter', 2: 'Unknown'}[truth] #xlabel = {1: 'True', 0: 'False', 2: 'Unknown'}[truth] else: if name_rank == 0: xlabel = { 1: 'True Positive', 0: 'False Positive', 2: 'Unknown'}[truth] else: xlabel = { 1: 'False Negative', 0: 'True Negative', 2: 'Unknown'}[truth] if len(tag_list) > 0: xlabel += '\n' + ', '.join(tag_list) pt.set_xlabel(xlabel) return ax
def bayesnet(): """ References: https://class.coursera.org/pgm-003/lecture/17 http://www.cs.ubc.ca/~murphyk/Bayes/bnintro.html http://www3.cs.stonybrook.edu/~sael/teaching/cse537/Slides/chapter14d_BP.pdf http://www.cse.unsw.edu.au/~cs9417ml/Bayes/Pages/PearlPropagation.html https://github.com/pgmpy/pgmpy.git http://pgmpy.readthedocs.org/en/latest/ http://nipy.bic.berkeley.edu:5000/download/11 """ # import operator as op # # Enumerate all possible events # varcard_list = list(map(op.attrgetter('variable_card'), cpd_list)) # _esdat = list(ut.iprod(*map(range, varcard_list))) # _escol = list(map(op.attrgetter('variable'), cpd_list)) # event_space = pd.DataFrame(_esdat, columns=_escol) # # Custom compression of event space to inspect a specific graph # def compress_space_flags(event_space, var1, var2, var3, cmp12_): # """ # var1, var2, cmp_ = 'Lj', 'Lk', op.eq # """ # import vtool as vt # data = event_space # other_cols = ut.setdiff_ordered(data.columns.tolist(), [var1, var2, var3]) # case_flags12 = cmp12_(data[var1], data[var2]).values # # case_flags23 = cmp23_(data[var2], data[var3]).values # # case_flags = np.logical_and(case_flags12, case_flags23) # case_flags = case_flags12 # case_flags = case_flags.astype(np.int64) # subspace = np.hstack((case_flags[:, None], data[other_cols].values)) # sel_ = vt.unique_row_indexes(subspace) # flags = np.logical_and(mask, case_flags) # return flags # # Build special cases # case_same = event_space.loc[compress_space_flags(event_space, 'Li', 'Lj', 'Lk', op.eq)] # case_diff = event_space.loc[compress_space_flags(event_space, 'Li', 'Lj', 'Lk', op.ne)] # special_cases = [ # case_same, # case_diff, # ] from pgmpy.factors import TabularCPD from pgmpy.models import BayesianModel import pandas as pd from pgmpy.inference import BeliefPropagation # NOQA from pgmpy.inference import VariableElimination # NOQA name_nice = ['n1', 'n2', 'n3'] score_nice = ['low', 'high'] match_nice = ['diff', 'same'] num_names = len(name_nice) num_scores = len(score_nice) nid_basis = list(range(num_names)) score_basis = list(range(num_scores)) semtype2_nice = { 'score': score_nice, 'name': name_nice, 'match': match_nice, } var2_cpd = { } globals()['semtype2_nice'] = semtype2_nice globals()['var2_cpd'] = var2_cpd name_combo = np.array(list(ut.iprod(nid_basis, nid_basis))) combo_is_same = name_combo.T[0] == name_combo.T[1] def get_expected_scores_prob(level1, level2): part1 = combo_is_same * level1 part2 = (1 - combo_is_same) * (1 - (level2)) expected_scores_level = part1 + part2 return expected_scores_level # def make_cpd(): def name_cpd(aid): from pgmpy.factors import TabularCPD cpd = TabularCPD( variable='N' + aid, variable_card=num_names, values=[[1.0 / num_names] * num_names]) cpd.semtype = 'name' return cpd name_cpds = [name_cpd('i'), name_cpd('j'), name_cpd('k')] var2_cpd.update(dict(zip([cpd.variable for cpd in name_cpds], name_cpds))) if True: num_same_diff = 2 samediff_measure = np.array([ # get_expected_scores_prob(.12, .2), # get_expected_scores_prob(.88, .8), get_expected_scores_prob(0, 0), get_expected_scores_prob(1, 1), ]) samediff_vals = (samediff_measure / samediff_measure.sum(axis=0)).tolist() def samediff_cpd(aid1, aid2): cpd = TabularCPD( variable='A' + aid1 + aid2, variable_card=num_same_diff, values=samediff_vals, evidence=['N' + aid1, 'N' + aid2], # [::-1], evidence_card=[num_names, num_names]) # [::-1]) cpd.semtype = 'match' return cpd samediff_cpds = [samediff_cpd('i', 'j'), samediff_cpd('j', 'k'), samediff_cpd('k', 'i')] var2_cpd.update(dict(zip([cpd.variable for cpd in samediff_cpds], samediff_cpds))) if True: def score_cpd(aid1, aid2): semtype = 'score' evidence = ['A' + aid1 + aid2, 'N' + aid1, 'N' + aid2] evidence_cpds = [var2_cpd[key] for key in evidence] evidence_nice = [semtype2_nice[cpd.semtype] for cpd in evidence_cpds] evidence_card = list(map(len, evidence_nice)) evidence_states = list(ut.iprod(*evidence_nice)) variable_basis = semtype2_nice[semtype] variable_values = [] for mystate in variable_basis: row = [] for state in evidence_states: if state[0] == state[1]: if state[2] == 'same': val = .2 if mystate == 'low' else .8 else: val = 1 # val = .5 if mystate == 'low' else .5 elif state[0] != state[1]: if state[2] == 'same': val = .5 if mystate == 'low' else .5 else: val = 1 # val = .9 if mystate == 'low' else .1 row.append(val) variable_values.append(row) cpd = TabularCPD( variable='S' + aid1 + aid2, variable_card=len(variable_basis), values=variable_values, evidence=evidence, # [::-1], evidence_card=evidence_card) # [::-1]) cpd.semtype = semtype return cpd else: score_values = [ [.8, .1], [.2, .9], ] def score_cpd(aid1, aid2): cpd = TabularCPD( variable='S' + aid1 + aid2, variable_card=num_scores, values=score_values, evidence=['A' + aid1 + aid2], # [::-1], evidence_card=[num_same_diff]) # [::-1]) cpd.semtype = 'score' return cpd score_cpds = [score_cpd('i', 'j'), score_cpd('j', 'k')] cpd_list = name_cpds + score_cpds + samediff_cpds else: score_measure = np.array([get_expected_scores_prob(level1, level2) for level1, level2 in zip(np.linspace(.1, .9, num_scores), np.linspace(.2, .8, num_scores))]) score_values = (score_measure / score_measure.sum(axis=0)).tolist() def score_cpd(aid1, aid2): cpd = TabularCPD( variable='S' + aid1 + aid2, variable_card=num_scores, values=score_values, evidence=['N' + aid1, 'N' + aid2], evidence_card=[num_names, num_names]) cpd.semtype = 'score' return cpd score_cpds = [score_cpd('i', 'j'), score_cpd('j', 'k')] cpd_list = name_cpds + score_cpds pass input_graph = [] for cpd in cpd_list: if cpd.evidence is not None: for evar in cpd.evidence: input_graph.append((evar, cpd.variable)) name_model = BayesianModel(input_graph) name_model.add_cpds(*cpd_list) var2_cpd.update(dict(zip([cpd.variable for cpd in cpd_list], cpd_list))) globals()['var2_cpd'] = var2_cpd varnames = [cpd.variable for cpd in cpd_list] # --- PRINT CPDS --- cpd = score_cpds[0] def print_cpd(cpd): print('CPT: %r' % (cpd,)) index = semtype2_nice[cpd.semtype] if cpd.evidence is None: columns = ['None'] else: basis_lists = [semtype2_nice[var2_cpd[ename].semtype] for ename in cpd.evidence] columns = [','.join(x) for x in ut.iprod(*basis_lists)] data = cpd.get_cpd() print(pd.DataFrame(data, index=index, columns=columns)) for cpd in name_model.get_cpds(): print('----') print(cpd._str('phi')) print_cpd(cpd) # --- INFERENCE --- Ni = name_cpds[0] event_space_combos = {} event_space_combos[Ni.variable] = 0 # Set ni to always be Fred for cpd in cpd_list: if cpd.semtype == 'score': event_space_combos[cpd.variable] = list(range(cpd.variable_card)) evidence_dict = ut.all_dict_combinations(event_space_combos) # Query about name of annotation k given different event space params def pretty_evidence(evidence): return [key + '=' + str(semtype2_nice[var2_cpd[key].semtype][val]) for key, val in evidence.items()] def print_factor(factor): row_cards = factor.cardinality row_vars = factor.variables values = factor.values.reshape(np.prod(row_cards), 1).flatten() # col_cards = 1 # col_vars = [''] basis_lists = list(zip(*list(ut.iprod(*[range(c) for c in row_cards])))) nice_basis_lists = [] for varname, basis in zip(row_vars, basis_lists): cpd = var2_cpd[varname] _nice_basis = ut.take(semtype2_nice[cpd.semtype], basis) nice_basis = ['%s=%s' % (varname, val) for val in _nice_basis] nice_basis_lists.append(nice_basis) row_lbls = [', '.join(sorted(x)) for x in zip(*nice_basis_lists)] print(ut.repr3(dict(zip(row_lbls, values)), precision=3, align=True, key_order_metric='-val')) # name_belief = BeliefPropagation(name_model) name_belief = VariableElimination(name_model) import pgmpy import six # NOQA def try_query(evidence): print('--------') query_vars = ut.setdiff_ordered(varnames, list(evidence.keys())) evidence_str = ', '.join(pretty_evidence(evidence)) probs = name_belief.query(query_vars, evidence) factor_list = probs.values() joint_factor = pgmpy.factors.factor_product(*factor_list) print('P(' + ', '.join(query_vars) + ' | ' + evidence_str + ')') # print(six.text_type(joint_factor)) factor = joint_factor # NOQA # print_factor(factor) # import utool as ut print(ut.hz_str([(f._str(phi_or_p='phi')) for f in factor_list])) for evidence in evidence_dict: try_query(evidence) evidence = {'Aij': 1, 'Ajk': 1, 'Aki': 1, 'Ni': 0} try_query(evidence) evidence = {'Aij': 0, 'Ajk': 0, 'Aki': 0, 'Ni': 0} try_query(evidence) globals()['score_nice'] = score_nice globals()['name_nice'] = name_nice globals()['score_basis'] = score_basis globals()['nid_basis'] = nid_basis print('Independencies') print(name_model.get_independencies()) print(name_model.local_independencies([Ni.variable])) # name_belief = BeliefPropagation(name_model) # # name_belief = VariableElimination(name_model) # for case in special_cases: # test_data = case.drop('Lk', axis=1) # test_data = test_data.reset_index(drop=True) # print('----') # for i in range(test_data.shape[0]): # evidence = test_data.loc[i].to_dict() # probs = name_belief.query(['Lk'], evidence) # factor = probs['Lk'] # probs = factor.values # evidence_ = evidence.copy() # evidence_['Li'] = name_nice[evidence['Li']] # evidence_['Lj'] = name_nice[evidence['Lj']] # evidence_['Sij'] = score_nice[evidence['Sij']] # evidence_['Sjk'] = score_nice[evidence['Sjk']] # nice2_prob = ut.odict(zip(name_nice, probs.tolist())) # ut.print_python_code('P(Lk | {evidence}) = {cpt}'.format( # evidence=(ut.repr2(evidence_, explicit=True, nobraces=True, strvals=True)), # cpt=ut.repr3(nice2_prob, precision=3, align=True, key_order_metric='-val') # )) # for case in special_cases: # test_data = case.drop('Lk', axis=1) # test_data = test_data.drop('Lj', axis=1) # test_data = test_data.reset_index(drop=True) # print('----') # for i in range(test_data.shape[0]): # evidence = test_data.loc[i].to_dict() # query_vars = ['Lk', 'Lj'] # probs = name_belief.query(query_vars, evidence) # for queryvar in query_vars: # factor = probs[queryvar] # print(factor._str('phi')) # probs = factor.values # evidence_ = evidence.copy() # evidence_['Li'] = name_nice[evidence['Li']] # evidence_['Sij'] = score_nice[evidence['Sij']] # evidence_['Sjk'] = score_nice[evidence['Sjk']] # nice2_prob = ut.odict(zip([queryvar + '=' + x for x in name_nice], probs.tolist())) # ut.print_python_code('P({queryvar} | {evidence}) = {cpt}'.format( # query_var=query_var, # evidence=(ut.repr2(evidence_, explicit=True, nobraces=True, strvals=True)), # cpt=ut.repr3(nice2_prob, precision=3, align=True, key_order_metric='-val') # )) # _ draw model import plottool as pt import networkx as netx fig = pt.figure() # NOQA fig.clf() ax = pt.gca() netx_nodes = [(node, {}) for node in name_model.nodes()] netx_edges = [(etup[0], etup[1], {}) for etup in name_model.edges()] netx_graph = netx.DiGraph() netx_graph.add_nodes_from(netx_nodes) netx_graph.add_edges_from(netx_edges) # pos = netx.graphviz_layout(netx_graph) pos = netx.pydot_layout(netx_graph, prog='dot') netx.draw(netx_graph, pos=pos, ax=ax, with_labels=True) pt.plt.savefig('foo.png') ut.startfile('foo.png')
def hackshow_names(ibs, aid_list, fnum=None): r""" Args: ibs (IBEISController): ibeis controller object aid_list (list): CommandLine: python -m ibeis.other.dbinfo --exec-hackshow_names --show python -m ibeis.other.dbinfo --exec-hackshow_names --show --db PZ_Master1 Example: >>> # DISABLE_DOCTEST >>> from ibeis.other.dbinfo import * # NOQA >>> import ibeis >>> ibs = ibeis.opendb(defaultdb='PZ_MTEST') >>> aid_list = ibs.get_valid_aids() >>> result = hackshow_names(ibs, aid_list) >>> print(result) >>> ut.show_if_requested() """ import plottool as pt import vtool as vt grouped_aids, nid_list = ibs.group_annots_by_name(aid_list) grouped_aids = [aids for aids in grouped_aids if len(aids) > 1] unixtimes_list = ibs.unflat_map(ibs.get_annot_image_unixtimes_asfloat, grouped_aids) yaws_list = ibs.unflat_map(ibs.get_annot_yaws, grouped_aids) #markers_list = [[(1, 2, yaw * 360 / (np.pi * 2)) for yaw in yaws] for yaws in yaws_list] unixtime_list = ut.flatten(unixtimes_list) timemax = np.nanmax(unixtime_list) timemin = np.nanmin(unixtime_list) timerange = timemax - timemin unixtimes_list = [((unixtimes[:] - timemin) / timerange) for unixtimes in unixtimes_list] for unixtimes in unixtimes_list: num_nan = sum(np.isnan(unixtimes)) unixtimes[np.isnan(unixtimes)] = np.linspace(-1, -.5, num_nan) #ydata_list = [np.arange(len(aids)) for aids in grouped_aids] sortx_list = vt.argsort_groups(unixtimes_list, reverse=False) #markers_list = ut.list_ziptake(markers_list, sortx_list) yaws_list = ut.list_ziptake(yaws_list, sortx_list) ydatas_list = vt.ziptake(unixtimes_list, sortx_list) #ydatas_list = sortx_list #ydatas_list = vt.argsort_groups(unixtimes_list, reverse=False) # Sort by num members #ydatas_list = ut.take(ydatas_list, np.argsort(list(map(len, ydatas_list)))) xdatas_list = [np.zeros(len(ydatas)) + count for count, ydatas in enumerate(ydatas_list)] #markers = ut.flatten(markers_list) #yaws = np.array(ut.flatten(yaws_list)) y_data = np.array(ut.flatten(ydatas_list)) x_data = np.array(ut.flatten(xdatas_list)) fnum = pt.ensure_fnum(fnum) pt.figure(fnum=fnum) ax = pt.gca() #unique_yaws, groupxs = vt.group_indices(yaws) ax.scatter(x_data, y_data, color=[1, 0, 0], s=1, marker='.') #pt.draw_stems(x_data, y_data, marker=markers, setlims=True, linestyle='') pt.dark_background() ax = pt.gca() ax.set_xlim(min(x_data) - .1, max(x_data) + .1) ax.set_ylim(min(y_data) - .1, max(y_data) + .1)
def show_model(model, evidence={}, soft_evidence={}, **kwargs): """ References: http://stackoverflow.com/questions/22207802/pygraphviz-networkx-set-node-level-or-layer Ignore: pkg-config --libs-only-L libcgraph sudo apt-get install libgraphviz-dev -y sudo apt-get install libgraphviz4 -y # sudo apt-get install pkg-config sudo apt-get install libgraphviz-dev # pip install git+git://github.com/pygraphviz/pygraphviz.git pip install pygraphviz python -c "import pygraphviz; print(pygraphviz.__file__)" sudo pip3 install pygraphviz --install-option="--include-path=/usr/include/graphviz" --install-option="--library-path=/usr/lib/graphviz/" python3 -c "import pygraphviz; print(pygraphviz.__file__)" CommandLine: python -m ibeis.algo.hots.bayes --exec-show_model --show Example: >>> # DISABLE_DOCTEST >>> from ibeis.algo.hots.bayes import * # NOQA >>> model = '?' >>> evidence = {} >>> soft_evidence = {} >>> result = show_model(model, evidence, soft_evidence) >>> print(result) >>> ut.quit_if_noshow() >>> import plottool as pt >>> ut.show_if_requested() """ if ut.get_argval('--hackmarkov') or ut.get_argval('--hackjunc'): draw_tree_model(model, **kwargs) return import plottool as pt import networkx as netx fnum = pt.ensure_fnum(None) netx_graph = (model) #netx_graph.graph.setdefault('graph', {})['size'] = '"10,5"' #netx_graph.graph.setdefault('graph', {})['rankdir'] = 'LR' pos_dict = get_hacked_pos(netx_graph) #pos_dict = netx.pygraphviz_layout(netx_graph) #pos = netx.pydot_layout(netx_graph, prog='dot') #pos_dict = netx.graphviz_layout(netx_graph) textprops = { 'family': 'monospace', 'horizontalalignment': 'left', #'horizontalalignment': 'center', #'size': 12, 'size': 8, } netx_nodes = model.nodes(data=True) node_key_list = ut.get_list_column(netx_nodes, 0) pos_list = ut.dict_take(pos_dict, node_key_list) var2_post = {f.variables[0]: f for f in kwargs.get('factor_list', [])} prior_text = None post_text = None evidence_tas = [] post_tas = [] prior_tas = [] node_color = [] has_infered = evidence or var2_post if has_infered: ignore_prior_with_ttype = ['score', 'match'] show_prior = False else: ignore_prior_with_ttype = [] #show_prior = True show_prior = False dpy = 5 dbx, dby = (20, 20) takw1 = {'bbox_align': (.5, 0), 'pos_offset': [0, dpy], 'bbox_offset': [dbx, dby]} takw2 = {'bbox_align': (.5, 1), 'pos_offset': [0, -dpy], 'bbox_offset': [-dbx, -dby]} name_colors = pt.distinct_colors(max(model.num_names, 10)) name_colors = name_colors[:model.num_names] #cmap_ = 'hot' #mx = 0.65 #mn = 0.15 cmap_, mn, mx = 'plasma', 0.15, 1.0 _cmap = pt.plt.get_cmap(cmap_) def cmap(x): return _cmap((x * mx) + mn) for node, pos in zip(netx_nodes, pos_list): variable = node[0] cpd = model.var2_cpd[variable] prior_marg = (cpd if cpd.evidence is None else cpd.marginalize(cpd.evidence, inplace=False)) show_evidence = variable in evidence show_prior = cpd.ttype not in ignore_prior_with_ttype show_post = variable in var2_post show_prior |= cpd.ttype not in ignore_prior_with_ttype post_marg = None if show_post: post_marg = var2_post[variable] def get_name_color(phi): order = phi.values.argsort()[::-1] if len(order) < 2: dist_next = phi.values[order[0]] else: dist_next = phi.values[order[0]] - phi.values[order[1]] dist_total = (phi.values[order[0]]) confidence = (dist_total * dist_next) ** (2.5 / 4) #print('confidence = %r' % (confidence,)) color = name_colors[order[0]] color = pt.color_funcs.desaturate_rgb(color, 1 - confidence) color = np.array(color) return color if variable in evidence: if cpd.ttype == 'score': cmap_index = evidence[variable] / (cpd.variable_card - 1) color = cmap(cmap_index) color = pt.lighten_rgb(color, .4) color = np.array(color) node_color.append(color) elif cpd.ttype == 'name': color = name_colors[evidence[variable]] color = np.array(color) node_color.append(color) else: color = pt.FALSE_RED node_color.append(color) #elif variable in soft_evidence: # color = pt.LIGHT_PINK # show_prior = True # color = get_name_color(prior_marg) # node_color.append(color) else: if cpd.ttype == 'name' and post_marg is not None: color = get_name_color(post_marg) node_color.append(color) elif cpd.ttype == 'match' and post_marg is not None: color = cmap(post_marg.values[1]) color = pt.lighten_rgb(color, .4) color = np.array(color) node_color.append(color) else: #color = pt.WHITE color = pt.NEUTRAL node_color.append(color) if show_prior: if variable in soft_evidence: prior_color = pt.LIGHT_PINK else: prior_color = None prior_text = pgm_ext.make_factor_text(prior_marg, 'prior') prior_tas.append(dict(text=prior_text, pos=pos, color=prior_color, **takw2)) if show_evidence: _takw1 = takw1 if cpd.ttype == 'score': _takw1 = takw2 evidence_text = cpd.variable_statenames[evidence[variable]] if isinstance(evidence_text, int): evidence_text = '%d/%d' % (evidence_text + 1, cpd.variable_card) evidence_tas.append(dict(text=evidence_text, pos=pos, color=color, **_takw1)) if show_post: _takw1 = takw1 if cpd.ttype == 'match': _takw1 = takw2 post_text = pgm_ext.make_factor_text(post_marg, 'post') post_tas.append(dict(text=post_text, pos=pos, color=None, **_takw1)) def trnps_(dict_list): """ tranpose dict list """ list_dict = ut.ddict(list) for dict_ in dict_list: for key, val in dict_.items(): list_dict[key + '_list'].append(val) return list_dict takw1_ = trnps_(post_tas + evidence_tas) takw2_ = trnps_(prior_tas) # Draw graph if has_infered: pnum1 = (3, 1, (slice(0, 2), 0)) else: pnum1 = None fig = pt.figure(fnum=fnum, pnum=pnum1, doclf=True) # NOQA ax = pt.gca() #print('node_color = %s' % (ut.repr3(node_color),)) drawkw = dict(pos=pos_dict, ax=ax, with_labels=True, node_size=1500, node_color=node_color) netx.draw(netx_graph, **drawkw) hacks = [] if len(post_tas + evidence_tas): hacks.append(pt.draw_text_annotations(textprops=textprops, **takw1_)) if prior_tas: hacks.append(pt.draw_text_annotations(textprops=textprops, **takw2_)) xmin, ymin = np.array(pos_list).min(axis=0) xmax, ymax = np.array(pos_list).max(axis=0) num_annots = len(model.ttype2_cpds['name']) if num_annots > 4: ax.set_xlim((xmin - 40, xmax + 40)) ax.set_ylim((ymin - 50, ymax + 50)) fig.set_size_inches(30, 7) else: ax.set_xlim((xmin - 42, xmax + 42)) ax.set_ylim((ymin - 50, ymax + 50)) fig.set_size_inches(23, 7) fig = pt.gcf() title = 'num_names=%r, num_annots=%r' % (model.num_names, num_annots,) map_assign = kwargs.get('map_assign', None) top_assignments = kwargs.get('top_assignments', None) if top_assignments is not None: map_assign, map_prob = top_assignments[0] if map_assign is not None: def word_insert(text): return '' if len(text) == 0 else text + ' ' title += '\n%sMAP: ' % (word_insert(kwargs.get('method', ''))) title += map_assign + ' @' + '%.2f%%' % (100 * map_prob,) if kwargs.get('show_title', True): pt.set_figtitle(title, size=14) for hack in hacks: hack() # Hack in colorbars if has_infered: pt.colorbar(np.linspace(0, 1, len(name_colors)), name_colors, lbl='name', ticklabels=model.ttype2_template['name'].basis, ticklocation='left') basis = model.ttype2_template['score'].basis scalars = np.linspace(0, 1, len(basis)) scalars = np.linspace(0, 1, 100) colors = pt.scores_to_color(scalars, cmap_=cmap_, reverse_cmap=False, cmap_range=(mn, mx)) colors = [pt.lighten_rgb(c, .4) for c in colors] if ut.list_type(basis) is int: pt.colorbar(scalars, colors, lbl='score', ticklabels=np.array(basis) + 1) else: pt.colorbar(scalars, colors, lbl='score', ticklabels=basis) #print('basis = %r' % (basis,)) # Draw probability hist if has_infered and top_assignments is not None: bin_labels = ut.get_list_column(top_assignments, 0) bin_vals = ut.get_list_column(top_assignments, 1) # bin_labels = ['\n'.join(ut.textwrap.wrap(_lbl, width=30)) for _lbl in bin_labels] pt.draw_histogram(bin_labels, bin_vals, fnum=fnum, pnum=(3, 8, (2, slice(4, None))), transpose=True, use_darkbackground=False, #xtick_rotation=-10, ylabel='Prob', xlabel='assignment') pt.set_title('Assignment probabilities')
def plot_chip(self, aid, nRows, nCols, px, fulldraw=True, **kwargs): """ Plots an individual chip in a subaxis """ ibs = self.ibs if aid in [self.aid1, self.aid2]: # Bold color for the matching chips lw = 5 text_color = np.array((135, 206, 235, 255)) / 255.0 else: lw = 2 text_color = None pnum = (nRows, nCols, px) if not fulldraw: # not doing full draw so we have to clear any axes # that are here already manually ax = self.fig.add_subplot(*pnum) self.clear_parent_axes(ax) #ut.embed() #print(subax) viz_chip_kw = { 'fnum': self.fnum, 'pnum': pnum, 'nokpts': True, 'show_name': True, 'show_gname': False, 'show_aidstr': True, 'notitle': True, 'show_num_gt': False, 'text_color': text_color, } if False and ut.is_developer(): enable_chip_title_prefix = True viz_chip_kw.update( { 'enable_chip_title_prefix': enable_chip_title_prefix, 'show_name': True, 'show_aidstr': True, 'show_yawtext': True, 'show_num_gt': True, 'show_quality_text': True, } ) viz_chip.show_chip(ibs, aid, **viz_chip_kw) ax = pt.gca() pt.draw_border(ax, color=kwargs.get('color'), lw=lw) if kwargs.get('make_buttons', True): #divider = pt.ensure_divider(ax) butkw = { #'divider': divider, 'ax': ax, 'size': '13%' #'size': '15%' } # Chip matching/naming options nid = ibs.get_annot_name_rowids(aid) annotation_unknown = ibs.is_nid_unknown([nid])[0] if not annotation_unknown: # remove name callback = functools.partial(self.unname_annotation, aid) self.append_button('remove name (' + ibs.get_name_texts(nid) + ')', callback=callback, **butkw) else: # new name callback = functools.partial(self.mark_annotation_as_new_name, aid) self.append_button('mark as new name', callback=callback, **butkw) if nid != self.nid2 and not ibs.is_nid_unknown([self.nid2])[0] and not self.is_split_case: # match to nid2 callback = functools.partial(self.rename_annotation, aid, self.nid2) text = 'match to name2: ' + ibs.get_name_texts(self.nid2) self.append_button(text, callback=callback, **butkw) if nid != self.nid1 and not ibs.is_nid_unknown([self.nid1])[0]: # match to nid1 callback = functools.partial(self.rename_annotation, aid, self.nid1) text = 'match to name1: ' + ibs.get_name_texts(self.nid1) self.append_button(text, callback=callback, **butkw) other_nid_list = self.get_other_nids() for other_nid in other_nid_list: if other_nid == nid: continue # rename nid2 callback = functools.partial(self.rename_annotation, aid, other_nid) text = 'match to: ' + ibs.get_name_texts(other_nid) self.append_button(text, callback=callback, **butkw) return ax
def draw_bayesian_model(model, evidence={}, soft_evidence={}, fnum=None, pnum=None, **kwargs): from pgmpy.models import BayesianModel if not isinstance(model, BayesianModel): model = model.to_bayesian_model() import plottool as pt import networkx as nx kwargs = kwargs.copy() factor_list = kwargs.pop('factor_list', []) ttype_colors, ttype_scalars = make_colorcodes(model) textprops = { 'horizontalalignment': 'left', 'family': 'monospace', 'size': 8, } # build graph attrs tup = get_node_viz_attrs(model, evidence, soft_evidence, factor_list, ttype_colors, **kwargs) node_color, pos_list, pos_dict, takws = tup # draw graph has_infered = evidence or 'factor_list' in kwargs if False: fig = pt.figure(fnum=fnum, pnum=pnum, doclf=True) # NOQA ax = pt.gca() drawkw = dict(pos=pos_dict, ax=ax, with_labels=True, node_size=1100, node_color=node_color) nx.draw(model, **drawkw) else: # BE VERY CAREFUL if 1: graph = model.copy() graph.__class__ = nx.DiGraph graph.graph['groupattrs'] = ut.ddict(dict) #graph = model. if getattr(graph, 'ttype2_cpds', None) is not None: # Add invis edges and ttype groups for ttype in model.ttype2_cpds.keys(): ttype_cpds = model.ttype2_cpds[ttype] # use defined ordering ttype_nodes = ut.list_getattr(ttype_cpds, 'variable') # ttype_nodes = sorted(ttype_nodes) invis_edges = list(ut.itertwo(ttype_nodes)) graph.add_edges_from(invis_edges) nx.set_edge_attributes( graph, 'style', {edge: 'invis' for edge in invis_edges}) nx.set_node_attributes( graph, 'groupid', {node: ttype for node in ttype_nodes}) graph.graph['groupattrs'][ttype]['rank'] = 'same' graph.graph['groupattrs'][ttype]['cluster'] = False else: graph = model pt.show_nx(graph, layout_kw={'prog': 'dot'}, fnum=fnum, pnum=pnum, verbose=0) pt.zoom_factory() fig = pt.gcf() ax = pt.gca() pass hacks = [ pt.draw_text_annotations(textprops=textprops, **takw) for takw in takws if takw ] xmin, ymin = np.array(pos_list).min(axis=0) xmax, ymax = np.array(pos_list).max(axis=0) if 'name' in model.ttype2_template: num_names = len(model.ttype2_template['name'].basis) num_annots = len(model.ttype2_cpds['name']) if num_annots > 4: ax.set_xlim((xmin - 40, xmax + 40)) ax.set_ylim((ymin - 50, ymax + 50)) fig.set_size_inches(30, 7) else: ax.set_xlim((xmin - 42, xmax + 42)) ax.set_ylim((ymin - 50, ymax + 50)) fig.set_size_inches(23, 7) title = 'num_names=%r, num_annots=%r' % ( num_names, num_annots, ) else: title = '' map_assign = kwargs.get('map_assign', None) def word_insert(text): return '' if len(text) == 0 else text + ' ' top_assignments = kwargs.get('top_assignments', None) if top_assignments is not None: map_assign, map_prob = top_assignments[0] if map_assign is not None: title += '\n%sMAP: ' % (word_insert(kwargs.get('method', ''))) title += map_assign + ' @' + '%.2f%%' % (100 * map_prob, ) if kwargs.get('show_title', True): pt.set_figtitle(title, size=14) for hack in hacks: hack() if has_infered: # Hack in colorbars # if ut.list_type(basis) is int: # pt.colorbar(scalars, colors, lbl='score', ticklabels=np.array(basis) + 1) # else: # pt.colorbar(scalars, colors, lbl='score', ticklabels=basis) keys = ['name', 'score'] locs = ['left', 'right'] for key, loc in zip(keys, locs): if key in ttype_colors: basis = model.ttype2_template[key].basis # scalars = colors = ttype_colors[key] scalars = ttype_scalars[key] pt.colorbar(scalars, colors, lbl=key, ticklabels=basis, ticklocation=loc)
def do_infr_test(ccs, edges, new_edges): """ Creates a graph with `ccs` + `edges` and then adds `new_edges` """ # import networkx as nx import plottool as pt infr = demo.make_demo_infr(ccs, edges) if ut.show_was_requested(): pt.qtensure() # Preshow fnum = 1 if ut.show_was_requested(): infr.set_node_attrs('shape', 'circle') infr.show(pnum=(2, 1, 1), fnum=fnum, show_unreviewed_edges=True, show_reviewed_cuts=True, splines='spline', show_inferred_diff=True, groupby='name_label', show_labels=True, pickable=True) pt.set_title('pre-review') pt.gca().set_aspect('equal') infr.set_node_attrs('pin', 'true') # fig1 = pt.gcf() # fig1.canvas.mpl_connect('pick_event', ut.partial(on_pick, infr=infr)) infr1 = infr infr2 = infr.copy() for new_edge in new_edges: aid1, aid2, data = new_edge evidence_decision = data['evidence_decision'] infr2.add_feedback((aid1, aid2), evidence_decision) infr2.relabel_using_reviews(rectify=False) infr2.apply_nondynamic_update() # Postshow if ut.show_was_requested(): infr2.show(pnum=(2, 1, 2), fnum=fnum, show_unreviewed_edges=True, show_inferred_diff=True, show_labels=True) pt.gca().set_aspect('equal') pt.set_title('post-review') # fig2 = pt.gcf() # if fig2 is not fig1: # fig2.canvas.mpl_connect('pick_event', ut.partial(on_pick, infr=infr2)) class Checker(object): """ Asserts pre and post test properties of the graph """ def __init__(self, infr1, infr2): self._errors = [] self.infr1 = infr1 self.infr2 = infr2 def __call__(self, infr, u, v, key, val, msg): data = infr.get_nonvisual_edge_data((u, v)) if data is None: assert infr.graph.has_edge(u, v), ('uv=%r, %r does not exist' % (u, v)) got = data.get(key) if got != val: msg1 = 'key=%s %r!=%r, ' % (key, got, val) errmsg = ''.join([ msg1, msg, '\nedge=', ut.repr2((u, v)), '\n', infr.repr_edge_data(data) ]) self._errors.append(errmsg) def custom_precheck(self, func): try: func(self.infr1) except AssertionError as ex: self._errors.append(str(ex)) def after(self, errors=[]): """ Delays error reporting until after visualization prints errors, then shows you the graph, then finally if any errors were discovered they are raised """ errors = errors + self._errors if errors: ut.cprint('PRINTING %d FAILURE' % (len(errors)), 'red') for msg in errors: print(msg) ut.cprint('HAD %d FAILURE' % (len(errors)), 'red') if ut.show_was_requested(): pt.all_figures_tile(percent_w=.5) ut.show_if_requested() if errors: raise AssertionError('There were errors') check = Checker(infr1, infr2) return infr1, infr2, check
def test_featweight_worker(): """ test function python -m ibeis.algo.preproc.preproc_featweight --test-gen_featweight_worker --show --cnn """ import ibeis qreq_ = ibeis.main_helpers.testdata_qreq_(defaultdb='PZ_MTEST', p=['default:fw_detector=cnn'], qaid_override=[1]) ibs = qreq_.ibs config2_ = qreq_.qparams lazy = True aid_list = qreq_.get_external_qaids() #aid_list = ibs.get_valid_aids()[0:30] kpts_list = ibs.get_annot_kpts(aid_list) chipsize_list = ibs.get_annot_chip_sizes(aid_list, config2_=config2_) probchip_fpath_list = preproc_probchip.compute_and_write_probchip(ibs, aid_list, lazy=lazy, config2_=config2_) print('probchip_fpath_list = %r' % (probchip_fpath_list,)) probchip_list = [vt.imread(fpath, grayscale=True) if exists(fpath) else None for fpath in probchip_fpath_list] _iter = list(zip(aid_list, kpts_list, probchip_list, chipsize_list)) _iter = ut.InteractiveIter(_iter, enabled=ut.get_argflag('--show')) for aid, kpts, probchip, chipsize in _iter: #kpts = kpts_list[0] #aid = aid_list[0] #probchip = probchip_list[0] #chipsize = chipsize_list[0] tup = (aid, kpts, probchip, chipsize) (aid, weights) = gen_featweight_worker(tup) if aid == 3 and ibs.get_dbname() == 'testdb1': # Run Asserts if not interactive weights_03_test = weights[0:3] print('weights[0:3] = %r' % (weights_03_test,)) #weights_03_target = [ 0.098, 0.155, 0.422] #weights_03_target = [ 0.324, 0.407, 0.688] #weights_thresh = [ 0.09, 0.09, 0.09] #ut.assert_almost_eq(weights_03_test, weights_03_target, weights_thresh) ut.assert_inbounds(weights_03_test, 0, 1) if not ut.show_was_requested(): break if ut.show_was_requested(): import plottool as pt #sfx, sfy = (probchip.shape[1] / chipsize[0], probchip.shape[0] / chipsize[1]) #kpts_ = vt.offset_kpts(kpts, (0, 0), (sfx, sfy)) pnum_ = pt.make_pnum_nextgen(1, 3) # *pt.get_square_row_cols(4)) fnum = 1 pt.figure(fnum=fnum, doclf=True) ### pt.imshow(ibs.get_annot_chips(aid, config2_=config2_), pnum=pnum_(0), fnum=fnum) if ut.get_argflag('--numlbl'): pt.gca().set_xlabel('(1)') ### pt.imshow(probchip, pnum=pnum_(2), fnum=fnum) if ut.get_argflag('--numlbl'): pt.gca().set_xlabel('(2)') #pt.draw_kpts2(kpts_, ell_alpha=.4, color_list=pt.ORANGE) ### #pt.imshow(probchip, pnum=pnum_(3), fnum=fnum) #color_list = pt.draw_kpts2(kpts_, weights=weights, ell_alpha=.7, cmap_='jet') #cb = pt.colorbar(weights, color_list) #cb.set_label('featweights') ### pt.imshow(ibs.get_annot_chips(aid, config2_=qreq_.qparams), pnum=pnum_(1), fnum=fnum) #color_list = pt.draw_kpts2(kpts, weights=weights, ell_alpha=.3, cmap_='jet') color_list = pt.draw_kpts2(kpts, weights=weights, ell_alpha=.3) cb = pt.colorbar(weights, color_list) cb.set_label('featweights') if ut.get_argflag('--numlbl'): pt.gca().set_xlabel('(3)') #pt.draw_kpts2(kpts, ell_alpha=.4) pt.draw() pt.show_if_requested()
def show_coverage_grid(num_rows, num_cols, subbin_xy_arr, neighbor_bin_centers, neighbor_bin_weights, neighbor_bin_indices, fnum=None, pnum=None): """ visualizes the voting scheme on the grid. (not a mask, and no max) """ import plottool as pt import vtool as vt import matplotlib as mpl if fnum is None: fnum = pt.next_fnum() fig = pt.figure(fnum, pnum=pnum) ax = fig.gca() x_edge_indices = np.arange(num_cols) y_edge_indices = np.arange(num_rows) x_center_indices = vt.hist_edges_to_centers(x_edge_indices) y_center_indices = vt.hist_edges_to_centers(y_edge_indices) x_center_grid, y_center_grid = np.meshgrid(x_center_indices, y_center_indices) ax.set_xticks(x_edge_indices) ax.set_yticks(y_edge_indices) # Plot keypoint loc ax.scatter(subbin_xy_arr[0], subbin_xy_arr[1], marker='o') # Plot Weighted Lines to Subbin pt_colors = pt.distinct_colors(len(subbin_xy_arr.T)) segment_list = [] color_list = [] for subbin_centers, subbin_weights in zip(neighbor_bin_centers, neighbor_bin_weights): for pt_xys, center_xys, weight, color in zip(subbin_xy_arr.T, subbin_centers, subbin_weights, pt_colors): # Adjsut weight to alpha for easier visualization alpha = weight INCRESE_ALPHA_VISIBILITY = True if INCRESE_ALPHA_VISIBILITY: min_viz_alpha = .05 alpha = alpha * (1.0 - min_viz_alpha) + min_viz_alpha alpha **= 1.0 #pt.plots.colorline( segment = np.vstack((pt_xys, center_xys)) segment_list.append(segment) # Alpha becomes part of the colors color_list.append(list(color) + [alpha]) # DO NOT USE PLOT VERY SLOW #ax.plot(*segment.T, color=color, alpha=alpha, lw=3) ax = pt.gca() # Plot all segments in single line collection for speed # solid | dashed | dashdot | dotted lc = mpl.collections.LineCollection(segment_list, colors=color_list, linewidth=3, linestyles='solid') ax.add_collection(lc) # Plot Grid Center num_cells = num_cols * num_rows grid_alpha = min(.4, max(1 - (num_cells / 500), .1)) grid_color = [.6, .6, .6, grid_alpha] #print(grid_color) # Plot grid cetner ax.scatter(x_center_grid, y_center_grid, marker='.', color=grid_color, s=grid_alpha) ax.set_xlim(0, num_cols - 1) ax.set_ylim(0, num_rows - 1) #----- pt.dark_background() ax.grid(True, color=[.3, .3, .3]) ax.set_xticklabels([]) ax.set_yticklabels([])
def viz_netx_chipgraph(ibs, netx_graph, fnum=None, with_images=False, zoom=ZOOM): r""" Args: ibs (IBEISController): ibeis controller object netx_graph (?): fnum (int): figure number(default = None) with_images (bool): (default = False) zoom (float): (default = 0.4) Returns: ?: pos CommandLine: python -m ibeis.viz.viz_graph --exec-viz_netx_chipgraph --show Example: >>> # DISABLE_DOCTEST >>> from ibeis.viz.viz_graph import * # NOQA >>> import ibeis >>> ibs = ibeis.opendb(defaultdb='testdb1') >>> nid_list = ibs.get_valid_nids()[0:5] >>> fnum = None >>> with_images = True >>> zoom = 0.4 >>> #pos = viz_netx_chipgraph(ibs, netx_graph, fnum, with_images, zoom) >>> make_name_graph_interaction(ibs, None, ibs.get_valid_aids()[0:1]) >>> #make_name_graph_interaction(ibs, nid_list) >>> ut.show_if_requested() """ if fnum is None: fnum = pt.next_fnum() #zoom = .8 print('[viz_graph] drawing chip graph') pt.figure(fnum=fnum, pnum=(1, 1, 1)) ax = pt.gca() #pos = netx.spring_layout(graph) aid_list = netx_graph.nodes() IMPLICIT_LAYOUT = len(set(ibs.get_annot_nids(aid_list))) != 1 # FIXME print('zoom = %r' % (zoom,)) if IMPLICIT_LAYOUT: # HACK: # Use name edge to make pos (very bad) aids1, aids2 = get_name_rowid_edges_from_aids(ibs, aid_list) netx_graph_hack = make_netx_graph_from_aidpairs(ibs, aids1, aids2, unique_aids=aid_list) pos = netx.graphviz_layout(netx_graph_hack) else: pos = netx.graphviz_layout(netx_graph) #pos = netx.fruchterman_reingold_layout(netx_graph) #pos = netx.spring_layout(netx_graph) netx.draw(netx_graph, pos=pos, ax=ax) with_nid_edges = True if with_nid_edges: import matplotlib as mpl import scipy.sparse as spsparse aids1, aids2 = get_name_rowid_edges_from_aids(ibs, aid_list) edge_pts1 = np.array(ut.dict_take(pos, aids1), dtype=np.int32) edge_pts2 = np.array(ut.dict_take(pos, aids2), dtype=np.int32) if len(edge_pts1) == 0: edge_pts1 = edge_pts1[:, None] if len(edge_pts2) == 0: edge_pts2 = edge_pts2[:, None] I = np.array(aids1) J = np.array(aids2) if len(aid_list) > 0: N = max(aid_list) + 1 else: N = 1 forced_edge_idxs = ut.dict_take(dict(zip(zip(I, J), range(len(I)))), netx_graph.edges()) data = vt.L2(edge_pts1, edge_pts2) if len(forced_edge_idxs) > 0: data[forced_edge_idxs] = 0.00001 graph = spsparse.coo_matrix((data, (I, J)), shape=(N, N)) def extract_connected_compoments(graph): import scipy.sparse as spsparse import utool as ut # I think this is how extraction is done? # only returns edge info # so singletons are not represented shape = graph.shape csr_graph = graph.tocsr() num_components, labels = spsparse.csgraph.connected_components(csr_graph) unique_labels = np.unique(labels) group_flags_list = [labels == groupid for groupid in unique_labels] subgraph_list = [] for label, group_flags in zip(unique_labels, group_flags_list): num_members = group_flags.sum() ixs = list(range(num_members)) if num_members == 0: continue group_rowix, group_cols = csr_graph[group_flags, :].nonzero() if len(group_cols) == 0: continue ix2_row = dict(zip(ixs, np.nonzero(group_flags)[0])) group_rows = ut.dict_take(ix2_row, group_rowix) component = (group_rows, group_cols.tolist()) data = csr_graph[component].tolist()[0] subgraph = spsparse.coo_matrix((data, component), shape=shape) subgraph_list.append(subgraph) #assert len(compoment_list) == num_components, 'bad impl' return subgraph_list subgraph_list = extract_connected_compoments(graph) spantree_aids1_ = [] spantree_aids2_ = [] for subgraph in subgraph_list: subgraph_spantree = spsparse.csgraph.minimum_spanning_tree(subgraph) min_aids1_, min_aids2_ = subgraph_spantree.nonzero() spantree_aids1_.extend(min_aids1_) spantree_aids2_.extend(min_aids2_) edge_pts1_ = np.array(ut.dict_take(pos, spantree_aids1_)) edge_pts2_ = np.array(ut.dict_take(pos, spantree_aids2_)) segments = list(zip(edge_pts1_, edge_pts2_)) #pt.distinct_colors color_list = pt.DARK_ORANGE #color_list = pt.BLACK line_group = mpl.collections.LineCollection(segments, color=color_list, alpha=.3, lw=4) ax.add_collection(line_group) if with_images: import cv2 pos_list = ut.dict_take(pos, aid_list) img_list = ibs.get_annot_chips(aid_list) img_list = [vt.resize_thumb(img, (220, 220)) for img in img_list] img_list = [cv2.cvtColor(img, cv2.COLOR_BGR2RGB) for img in img_list] artist_list = netx_draw_images_at_positions(img_list, pos_list, zoom=zoom) for artist, aid in zip(artist_list, aid_list): pt.set_plotdat(artist, 'aid', aid) return pos
def iters_until_threshold(): """ How many iterations of ewma until you hit the poisson / biniomal threshold This establishes a principled way to choose the threshold for the refresh criterion in my thesis. There are paramters --- moving parts --- that we need to work with: `a` the patience, `s` the span, and `mu` our ewma. `s` is a span paramter indicating how far we look back. `mu` is the average number of label-changing reviews in roughly the last `s` manual decisions. These numbers are used to estimate the probability that any of the next `a` manual decisions will be label-chanigng. When that probability falls below a threshold we terminate. The goal is to choose `a`, `s`, and the threshold `t`, such that the probability will fall below the threshold after a maximum of `a` consecutive non-label-chaning reviews. IE we want to tie the patience paramter (how far we look ahead) to how far we actually are willing to go. """ import numpy as np import utool as ut import sympy as sym i = sym.symbols('i', integer=True, nonnegative=True, finite=True) # mu_i = sym.symbols('mu_i', integer=True, nonnegative=True, finite=True) s = sym.symbols('s', integer=True, nonnegative=True, finite=True) # NOQA thresh = sym.symbols('tau', real=True, nonnegative=True, finite=True) # NOQA alpha = sym.symbols('alpha', real=True, nonnegative=True, finite=True) # NOQA c_alpha = sym.symbols('c_alpha', real=True, nonnegative=True, finite=True) # patience a = sym.symbols('a', real=True, nonnegative=True, finite=True) available_subs = { a: 20, s: a, alpha: 2 / (s + 1), c_alpha: (1 - alpha), } def dosubs(expr, d=available_subs): """ recursive expression substitution """ expr1 = expr.subs(d) if expr == expr1: return expr1 else: return dosubs(expr1, d=d) # mu is either the support for the poisson distribution # or is is the p in the binomial distribution # It is updated at timestep i based on ewma, assuming each incoming responce is 0 mu_0 = 1.0 mu_i = c_alpha**i # Estimate probability that any event will happen in the next `a` reviews # at time `i`. poisson_i = 1 - sym.exp(-mu_i * a) binom_i = 1 - (1 - mu_i)**a # Expand probabilities to be a function of i, s, and a part = ut.delete_dict_keys(available_subs.copy(), [a, s]) mu_i = dosubs(mu_i, d=part) poisson_i = dosubs(poisson_i, d=part) binom_i = dosubs(binom_i, d=part) if True: # ewma of mu at time i if review is always not label-changing (meaningful) mu_1 = c_alpha * mu_0 # NOQA mu_2 = c_alpha * mu_1 # NOQA if True: i_vals = np.arange(0, 100) mu_vals = np.array( [dosubs(mu_i).subs({ i: i_ }).evalf() for i_ in i_vals]) # NOQA binom_vals = np.array( [dosubs(binom_i).subs({ i: i_ }).evalf() for i_ in i_vals]) # NOQA poisson_vals = np.array( [dosubs(poisson_i).subs({ i: i_ }).evalf() for i_ in i_vals]) # NOQA # Find how many iters it actually takes my expt to terminate thesis_draft_thresh = np.exp(-2) np.where(mu_vals < thesis_draft_thresh)[0] np.where(binom_vals < thesis_draft_thresh)[0] np.where(poisson_vals < thesis_draft_thresh)[0] sym.pprint(sym.simplify(mu_i)) sym.pprint(sym.simplify(binom_i)) sym.pprint(sym.simplify(poisson_i)) # Find the thresholds that force termination after `a` reviews have passed # do this by setting i=a poisson_thresh = poisson_i.subs({i: a}) binom_thresh = binom_i.subs({i: a}) print('Poisson thresh') print(sym.latex(sym.Eq(thresh, poisson_thresh))) print(sym.latex(sym.Eq(thresh, sym.simplify(poisson_thresh)))) poisson_thresh.subs({a: 115, s: 30}).evalf() sym.pprint(sym.Eq(thresh, poisson_thresh)) sym.pprint(sym.Eq(thresh, sym.simplify(poisson_thresh))) print('Binomial thresh') sym.pprint(sym.simplify(binom_thresh)) sym.pprint(sym.simplify(poisson_thresh.subs({s: a}))) def taud(coeff): return coeff * 360 if 'poisson_cache' not in vars(): poisson_cache = {} binom_cache = {} S, A = np.meshgrid(np.arange(1, 150, 1), np.arange(0, 150, 1)) import plottool as pt SA_coords = list(zip(S.ravel(), A.ravel())) for sval, aval in ut.ProgIter(SA_coords): if (sval, aval) not in poisson_cache: poisson_cache[(sval, aval)] = float( poisson_thresh.subs({ a: aval, s: sval }).evalf()) poisson_zdata = np.array([ poisson_cache[(sval, aval)] for sval, aval in SA_coords ]).reshape(A.shape) fig = pt.figure(fnum=1, doclf=True) pt.gca().set_axis_off() pt.plot_surface3d(S, A, poisson_zdata, xlabel='s', ylabel='a', rstride=3, cstride=3, zlabel='poisson', mode='wire', contour=True, title='poisson3d') pt.gca().set_zlim(0, 1) pt.gca().view_init(elev=taud(1 / 16), azim=taud(5 / 8)) fig.set_size_inches(10, 6) fig.savefig('a-s-t-poisson3d.png', dpi=300, bbox_inches=pt.extract_axes_extents(fig, combine=True)) for sval, aval in ut.ProgIter(SA_coords): if (sval, aval) not in binom_cache: binom_cache[(sval, aval)] = float( binom_thresh.subs({ a: aval, s: sval }).evalf()) binom_zdata = np.array([ binom_cache[(sval, aval)] for sval, aval in SA_coords ]).reshape(A.shape) fig = pt.figure(fnum=2, doclf=True) pt.gca().set_axis_off() pt.plot_surface3d(S, A, binom_zdata, xlabel='s', ylabel='a', rstride=3, cstride=3, zlabel='binom', mode='wire', contour=True, title='binom3d') pt.gca().set_zlim(0, 1) pt.gca().view_init(elev=taud(1 / 16), azim=taud(5 / 8)) fig.set_size_inches(10, 6) fig.savefig('a-s-t-binom3d.png', dpi=300, bbox_inches=pt.extract_axes_extents(fig, combine=True)) # Find point on the surface that achieves a reasonable threshold # Sympy can't solve this # sym.solve(sym.Eq(binom_thresh.subs({s: 50}), .05)) # sym.solve(sym.Eq(poisson_thresh.subs({s: 50}), .05)) # Find a numerical solution def solve_numeric(expr, target, solve_for, fixed={}, method=None, bounds=None): """ Args: expr (Expr): symbolic expression target (float): numberic value solve_for (sympy.Symbol): The symbol you care about fixed (dict): fixed values of the symbol solve_numeric(poisson_thresh, .05, {s: 30}, method=None) solve_numeric(poisson_thresh, .05, {s: 30}, method='Nelder-Mead') solve_numeric(poisson_thresh, .05, {s: 30}, method='BFGS') """ import scipy.optimize # Find the symbol you want to solve for want_symbols = expr.free_symbols - set(fixed.keys()) # TODO: can probably extend this to multiple params assert len(want_symbols) == 1, 'specify all but one var' assert solve_for == list(want_symbols)[0] fixed_expr = expr.subs(fixed) def func(a1): expr_value = float(fixed_expr.subs({solve_for: a1}).evalf()) return (expr_value - target)**2 if not fixed: a1 = 0 else: a1 = list(fixed.values())[0] # if method is None: # method = 'Nelder-Mead' # method = 'Newton-CG' # method = 'BFGS' result = scipy.optimize.minimize(func, x0=a1, method=method, bounds=bounds) if not result.success: print('\n') print(result) print('\n') return result # Numeric measurments of thie line thresh_vals = [.001, .01, .05, .1, .135] svals = np.arange(1, 100) target_poisson_plots = {} for target in ut.ProgIter(thresh_vals, bs=False, freq=1): poisson_avals = [] for sval in ut.ProgIter(svals, 'poisson', freq=1): expr = poisson_thresh fixed = {s: sval} want = a aval = solve_numeric(expr, target, want, fixed, method='Nelder-Mead').x[0] poisson_avals.append(aval) target_poisson_plots[target] = (svals, poisson_avals) fig = pt.figure(fnum=3) for target, dat in target_poisson_plots.items(): pt.plt.plot(*dat, label='prob={}'.format(target)) pt.gca().set_xlabel('s') pt.gca().set_ylabel('a') pt.legend() pt.gca().set_title('poisson') fig.set_size_inches(5, 3) fig.savefig('a-vs-s-poisson.png', dpi=300, bbox_inches=pt.extract_axes_extents(fig, combine=True)) target_binom_plots = {} for target in ut.ProgIter(thresh_vals, bs=False, freq=1): binom_avals = [] for sval in ut.ProgIter(svals, 'binom', freq=1): aval = solve_numeric(binom_thresh, target, a, { s: sval }, method='Nelder-Mead').x[0] binom_avals.append(aval) target_binom_plots[target] = (svals, binom_avals) fig = pt.figure(fnum=4) for target, dat in target_binom_plots.items(): pt.plt.plot(*dat, label='prob={}'.format(target)) pt.gca().set_xlabel('s') pt.gca().set_ylabel('a') pt.legend() pt.gca().set_title('binom') fig.set_size_inches(5, 3) fig.savefig('a-vs-s-binom.png', dpi=300, bbox_inches=pt.extract_axes_extents(fig, combine=True)) # ---- if True: fig = pt.figure(fnum=5, doclf=True) s_vals = [1, 2, 3, 10, 20, 30, 40, 50] for sval in s_vals: pp = poisson_thresh.subs({s: sval}) a_vals = np.arange(0, 200) pp_vals = np.array( [float(pp.subs({ a: aval }).evalf()) for aval in a_vals]) # NOQA pt.plot(a_vals, pp_vals, label='s=%r' % (sval, )) pt.legend() pt.gca().set_xlabel('a') pt.gca().set_ylabel('poisson prob after a reviews') fig.set_size_inches(5, 3) fig.savefig('a-vs-thresh-poisson.png', dpi=300, bbox_inches=pt.extract_axes_extents(fig, combine=True)) fig = pt.figure(fnum=6, doclf=True) s_vals = [1, 2, 3, 10, 20, 30, 40, 50] for sval in s_vals: pp = binom_thresh.subs({s: sval}) a_vals = np.arange(0, 200) pp_vals = np.array( [float(pp.subs({ a: aval }).evalf()) for aval in a_vals]) # NOQA pt.plot(a_vals, pp_vals, label='s=%r' % (sval, )) pt.legend() pt.gca().set_xlabel('a') pt.gca().set_ylabel('binom prob after a reviews') fig.set_size_inches(5, 3) fig.savefig('a-vs-thresh-binom.png', dpi=300, bbox_inches=pt.extract_axes_extents(fig, combine=True)) # ------- fig = pt.figure(fnum=5, doclf=True) a_vals = [1, 2, 3, 10, 20, 30, 40, 50] for aval in a_vals: pp = poisson_thresh.subs({a: aval}) s_vals = np.arange(1, 200) pp_vals = np.array( [float(pp.subs({ s: sval }).evalf()) for sval in s_vals]) # NOQA pt.plot(s_vals, pp_vals, label='a=%r' % (aval, )) pt.legend() pt.gca().set_xlabel('s') pt.gca().set_ylabel('poisson prob') fig.set_size_inches(5, 3) fig.savefig('s-vs-thresh-poisson.png', dpi=300, bbox_inches=pt.extract_axes_extents(fig, combine=True)) fig = pt.figure(fnum=5, doclf=True) a_vals = [1, 2, 3, 10, 20, 30, 40, 50] for aval in a_vals: pp = binom_thresh.subs({a: aval}) s_vals = np.arange(1, 200) pp_vals = np.array( [float(pp.subs({ s: sval }).evalf()) for sval in s_vals]) # NOQA pt.plot(s_vals, pp_vals, label='a=%r' % (aval, )) pt.legend() pt.gca().set_xlabel('s') pt.gca().set_ylabel('binom prob') fig.set_size_inches(5, 3) fig.savefig('s-vs-thresh-binom.png', dpi=300, bbox_inches=pt.extract_axes_extents(fig, combine=True)) #--------------------- # Plot out a table mu_i.subs({s: 75, a: 75}).evalf() poisson_thresh.subs({s: 75, a: 75}).evalf() sval = 50 for target, dat in target_poisson_plots.items(): slope = np.median(np.diff(dat[1])) aval = int(np.ceil(sval * slope)) thresh = float(poisson_thresh.subs({s: sval, a: aval}).evalf()) print('aval={}, sval={}, thresh={}, target={}'.format( aval, sval, thresh, target)) for target, dat in target_binom_plots.items(): slope = np.median(np.diff(dat[1])) aval = int(np.ceil(sval * slope)) pass
def show_model(model, evidence={}, soft_evidence={}, **kwargs): """ References: http://stackoverflow.com/questions/22207802/pygraphviz-networkx-set-node-level-or-layer Ignore: pkg-config --libs-only-L libcgraph sudo apt-get install libgraphviz-dev -y sudo apt-get install libgraphviz4 -y # sudo apt-get install pkg-config sudo apt-get install libgraphviz-dev # pip install git+git://github.com/pygraphviz/pygraphviz.git pip install pygraphviz python -c "import pygraphviz; print(pygraphviz.__file__)" sudo pip3 install pygraphviz --install-option="--include-path=/usr/include/graphviz" --install-option="--library-path=/usr/lib/graphviz/" python3 -c "import pygraphviz; print(pygraphviz.__file__)" """ if ut.get_argval('--hackmarkov') or ut.get_argval('--hackjunc'): draw_tree_model(model, **kwargs) return import plottool as pt import networkx as netx import matplotlib as mpl fnum = pt.ensure_fnum(None) fig = pt.figure(fnum=fnum, pnum=(3, 1, (slice(0, 2), 0)), doclf=True) # NOQA #fig = pt.figure(fnum=fnum, pnum=(3, 2, (1, slice(1, 2))), doclf=True) # NOQA ax = pt.gca() var2_post = {f.variables[0]: f for f in kwargs.get('factor_list', [])} netx_graph = (model) #netx_graph.graph.setdefault('graph', {})['size'] = '"10,5"' #netx_graph.graph.setdefault('graph', {})['rankdir'] = 'LR' pos = get_hacked_pos(netx_graph) #netx.pygraphviz_layout(netx_graph) #pos = netx.pydot_layout(netx_graph, prog='dot') #pos = netx.graphviz_layout(netx_graph) drawkw = dict(pos=pos, ax=ax, with_labels=True, node_size=1500) if evidence is not None: node_colors = [ # (pt.TRUE_BLUE (pt.WHITE if node not in soft_evidence else pt.LIGHT_PINK) if node not in evidence else pt.FALSE_RED for node in netx_graph.nodes()] for node in netx_graph.nodes(): cpd = model.var2_cpd[node] if cpd.ttype == 'score': pass drawkw['node_color'] = node_colors netx.draw(netx_graph, **drawkw) show_probs = True if show_probs: textprops = { 'family': 'monospace', 'horizontalalignment': 'left', #'horizontalalignment': 'center', #'size': 12, 'size': 8, } textkw = dict( xycoords='data', boxcoords='offset points', pad=0.25, frameon=True, arrowprops=dict(arrowstyle='->'), #bboxprops=dict(fc=node_attr['fillcolor']), ) netx_nodes = model.nodes(data=True) node_key_list = ut.get_list_column(netx_nodes, 0) pos_list = ut.dict_take(pos, node_key_list) artist_list = [] offset_box_list = [] for pos_, node in zip(pos_list, netx_nodes): x, y = pos_ variable = node[0] cpd = model.var2_cpd[variable] prior_marg = (cpd if cpd.evidence is None else cpd.marginalize(cpd.evidence, inplace=False)) prior_text = None text = None if variable in evidence: text = cpd.variable_statenames[evidence[variable]] elif variable in var2_post: post_marg = var2_post[variable] text = pgm_ext.make_factor_text(post_marg, 'post') prior_text = pgm_ext.make_factor_text(prior_marg, 'prior') else: if len(evidence) == 0 and len(soft_evidence) == 0: prior_text = pgm_ext.make_factor_text(prior_marg, 'prior') show_post = kwargs.get('show_post', False) show_prior = kwargs.get('show_prior', False) show_prior = True show_post = True show_ev = (evidence is not None and variable in evidence) if (show_post or show_ev) and text is not None: offset_box = mpl.offsetbox.TextArea(text, textprops) artist = mpl.offsetbox.AnnotationBbox( # offset_box, (x + 5, y), xybox=(20., 5.), offset_box, (x, y + 5), xybox=(4., 20.), #box_alignment=(0, 0), box_alignment=(.5, 0), **textkw) offset_box_list.append(offset_box) artist_list.append(artist) if show_prior and prior_text is not None: offset_box2 = mpl.offsetbox.TextArea(prior_text, textprops) artist2 = mpl.offsetbox.AnnotationBbox( # offset_box2, (x - 5, y), xybox=(-20., -15.), # offset_box2, (x, y - 5), xybox=(-15., -20.), offset_box2, (x, y - 5), xybox=(-4, -20.), #box_alignment=(1, 1), box_alignment=(.5, 1), **textkw) offset_box_list.append(offset_box2) artist_list.append(artist2) for artist in artist_list: ax.add_artist(artist) xmin, ymin = np.array(pos_list).min(axis=0) xmax, ymax = np.array(pos_list).max(axis=0) num_annots = len(model.ttype2_cpds['name']) if num_annots > 4: ax.set_xlim((xmin - 40, xmax + 40)) ax.set_ylim((ymin - 50, ymax + 50)) fig.set_size_inches(30, 7) else: ax.set_xlim((xmin - 42, xmax + 42)) ax.set_ylim((ymin - 50, ymax + 50)) fig.set_size_inches(23, 7) fig = pt.gcf() title = 'num_names=%r, num_annots=%r' % (model.num_names, num_annots,) map_assign = kwargs.get('map_assign', None) #max_marginal_list = [] #for name, marginal in marginalized_joints.items(): # states = list(ut.iprod(*marginal.statenames)) # vals = marginal.values.ravel() # x = vals.argmax() # max_marginal_list += ['P(' + ', '.join(states[x]) + ') = ' + str(vals[x])] # title += str(marginal) top_assignments = kwargs.get('top_assignments', None) if top_assignments is not None: map_assign, map_prob = top_assignments[0] if map_assign is not None: # title += '\nMAP=' + ut.repr2(map_assign, strvals=True) title += '\nMAP: ' + map_assign + ' @' + '%.2f%%' % (100 * map_prob,) if kwargs.get('show_title', True): pt.set_figtitle(title, size=14) #pt.set_xlabel() def hack_fix_centeralign(): if textprops['horizontalalignment'] == 'center': print('Fixing centeralign') fig = pt.gcf() fig.canvas.draw() # Superhack for centered text. Fix bug in # /usr/local/lib/python2.7/dist-packages/matplotlib/offsetbox.py # /usr/local/lib/python2.7/dist-packages/matplotlib/text.py for offset_box in offset_box_list: offset_box.set_offset z = offset_box._text.get_window_extent() (z.x1 - z.x0) / 2 offset_box._text T = offset_box._text.get_transform() A = mpl.transforms.Affine2D() A.clear() A.translate((z.x1 - z.x0) / 2, 0) offset_box._text.set_transform(T + A) hack_fix_centeralign() top_assignments = kwargs.get('top_assignments', None) if top_assignments is not None: bin_labels = ut.get_list_column(top_assignments, 0) bin_vals = ut.get_list_column(top_assignments, 1) # bin_labels = ['\n'.join(ut.textwrap.wrap(_lbl, width=30)) for _lbl in bin_labels] pt.draw_histogram(bin_labels, bin_vals, fnum=fnum, pnum=(3, 8, (2, slice(4, None))), transpose=True, use_darkbackground=False, #xtick_rotation=-10, ylabel='Prob', xlabel='assignment') pt.set_title('Assignment probabilities')
def ewma(): import plottool as pt import ubelt as ub import numpy as np pt.qtensure() # Investigate the span parameter span = 20 alpha = 2 / (span + 1) # how long does it take for the estimation to hit 0? # (ie, it no longer cares about the initial 1?) # about 93 iterations to get to 1e-4 # about 47 iterations to get to 1e-2 # about 24 iterations to get to 1e-1 # 20 iterations goes to .135 data = ([1] + [0] * 20 + [1] * 40 + [0] * 20 + [1] * 50 + [0] * 20 + [1] * 60 + [0] * 20 + [1] * 165 + [0] * 20 + [0]) mave = [] iter_ = iter(data) current = next(iter_) mave += [current] for x in iter_: current = (alpha * x) + (1 - alpha) * current mave += [current] if False: pt.figure(fnum=1, doclf=True) pt.plot(data) pt.plot(mave) np.where(np.array(mave) < 1e-1) import sympy as sym # span, alpha, n = sym.symbols('span, alpha, n') n = sym.symbols('n', integer=True, nonnegative=True, finite=True) span = sym.symbols('span', integer=True, nonnegative=True, finite=True) thresh = sym.symbols('thresh', real=True, nonnegative=True, finite=True) # alpha = 2 / (span + 1) a, b, c = sym.symbols('a, b, c', real=True, nonnegative=True, finite=True) sym.solve(sym.Eq(b**a, c), a) current = 1 x = 0 steps = [] for _ in range(10): current = (alpha * x) + (1 - alpha) * current steps.append(current) alpha = sym.symbols('alpha', real=True, nonnegative=True, finite=True) base = sym.symbols('base', real=True, finite=True) alpha = 2 / (span + 1) thresh_expr = (1 - alpha)**n thresthresh_exprh_expr = base**n n_expr = sym.ceiling(sym.log(thresh) / sym.log(1 - 2 / (span + 1))) sym.pprint(sym.simplify(thresh_expr)) sym.pprint(sym.simplify(n_expr)) print(sym.latex(sym.simplify(n_expr))) # def calc_n2(span, thresh): # return np.log(thresh) / np.log(1 - 2 / (span + 1)) def calc_n(span, thresh): return np.log(thresh) / np.log((span - 1) / (span + 1)) def calc_thresh_val(n, span): alpha = 2 / (span + 1) return (1 - alpha)**n span = np.arange(2, 200) n_frac = calc_n(span, thresh=.5) n = np.ceil(n_frac) calc_thresh_val(n, span) pt.figure(fnum=1, doclf=True) ydatas = ut.odict([('thresh=%f' % thresh, np.ceil(calc_n(span, thresh=thresh))) for thresh in [1e-3, .01, .1, .2, .3, .4, .5]]) pt.multi_plot( span, ydatas, xlabel='span', ylabel='n iters to acheive thresh', marker='', # num_xticks=len(span), fnum=1) pt.gca().set_aspect('equal') def both_sides(eqn, func): return sym.Eq(func(eqn.lhs), func(eqn.rhs)) eqn = sym.Eq(thresh_expr, thresh) n_expr = sym.solve(eqn, n)[0].subs(base, (1 - alpha)).subs(alpha, (2 / (span + 1))) eqn = both_sides(eqn, lambda x: sym.log(x, (1 - alpha))) lhs = eqn.lhs from sympy.solvers.inequalities import solve_univariate_inequality def eval_expr(span_value, n_value): return np.array( [thresh_expr.subs(span, span_value).subs(n, n_) for n_ in n_value], dtype=np.float) eval_expr(20, np.arange(20)) def linear(x, a, b): return a * x + b def sigmoidal_4pl(x, a, b, c, d): return d + (a - d) / (1 + (x / c)**b) def exponential(x, a, b, c): return a + b * np.exp(-c * x) import scipy.optimize # Determine how to choose span, such that you get to .01 from 1 # in n timesteps thresh_to_span_to_n = [] thresh_to_n_to_span = [] for thresh_value in ub.ProgIter([.0001, .001, .01, .1, .2, .3, .4, .5]): print('') test_vals = sorted([2, 3, 4, 5, 6]) n_to_span = [] for n_value in ub.ProgIter(test_vals): # In n iterations I want to choose a span that the expression go # less than a threshold constraint = thresh_expr.subs(n, n_value) < thresh_value solution = solve_univariate_inequality(constraint, span) try: lowbound = np.ceil(float(solution.args[0].lhs)) highbound = np.floor(float(solution.args[1].rhs)) assert lowbound <= highbound span_value = lowbound except AttributeError: span_value = np.floor(float(solution.rhs)) n_to_span.append((n_value, span_value)) # Given a threshold, find a minimum number of steps # that brings you up to that threshold given a span test_vals = sorted(set(list(range(2, 1000, 50)) + [2, 3, 4, 5, 6])) span_to_n = [] for span_value in ub.ProgIter(test_vals): constraint = thresh_expr.subs(span, span_value) < thresh_value solution = solve_univariate_inequality(constraint, n) n_value = solution.lhs span_to_n.append((span_value, n_value)) thresh_to_n_to_span.append((thresh_value, n_to_span)) thresh_to_span_to_n.append((thresh_value, span_to_n)) thresh_to_params = [] for thresh_value, span_to_n in thresh_to_span_to_n: xdata, ydata = [np.array(_, dtype=np.float) for _ in zip(*span_to_n)] p0 = (1 / np.diff((ydata - ydata[0])[1:]).mean(), ydata[0]) func = linear popt, pcov = scipy.optimize.curve_fit(func, xdata, ydata, p0) # popt, pcov = scipy.optimize.curve_fit(exponential, xdata, ydata) if False: yhat = func(xdata, *popt) pt.figure(fnum=1, doclf=True) pt.plot(xdata, ydata, label='measured') pt.plot(xdata, yhat, label='predicteed') pt.legend() # slope = np.diff(ydata).mean() # pt.plot(d) thresh_to_params.append((thresh_value, popt)) # pt.plt.plot(*zip(*thresh_to_slope), 'x-') # for thresh_value=.01, we get a rough line with slop ~2.302, # for thresh_value=.5, we get a line with slop ~34.66 # if we want to get to 0 in n timesteps, with a thresh_value of # choose span=f(thresh_value) * (n + 2)) # f is some inverse exponential # 0.0001, 460.551314197147 # 0.001, 345.413485647860, # 0.01, 230.275657098573, # 0.1, 115.137828549287, # 0.2, 80.4778885203347, # 0.3, 60.2031233261536, # 0.4, 45.8179484913827, # 0.5, 34.6599400289520 # Seems to be 4PL symetrical sigmoid # f(x) = -66500.85 + (66515.88 - -66500.85) / (1 + (x/0.8604672)^0.001503716) # f(x) = -66500.85 + (66515.88 - -66500.85)/(1 + (x/0.8604672)^0.001503716) def f(x): return -66500.85 + (66515.88 - -66500.85) / (1 + (x / 0.8604672)**0.001503716) # return (10000 * (-6.65 + (13.3015) / (1 + (x/0.86) ** 0.00150))) # f(.5) * (n - 1) # f( solve_rational_inequalities(thresh_expr < .01, n)
def draw_bayesian_model(model, evidence={}, soft_evidence={}, fnum=None, pnum=None, **kwargs): from pgmpy.models import BayesianModel if not isinstance(model, BayesianModel): model = model.to_bayesian_model() import plottool as pt import networkx as netx factor_list = kwargs.get('factor_list', []) ttype_colors, ttype_scalars = make_colorcodes(model) textprops = { 'horizontalalignment': 'left', 'family': 'monospace', 'size': 8, } # build graph attrs tup = get_node_viz_attrs( model, evidence, soft_evidence, factor_list, ttype_colors, **kwargs) node_color, pos_list, pos_dict, takws = tup # draw graph has_infered = evidence or 'factor_list' in kwargs fig = pt.figure(fnum=fnum, pnum=pnum, doclf=True) # NOQA ax = pt.gca() drawkw = dict(pos=pos_dict, ax=ax, with_labels=True, node_size=1100, node_color=node_color) netx.draw(model, **drawkw) hacks = [pt.draw_text_annotations(textprops=textprops, **takw) for takw in takws if takw] xmin, ymin = np.array(pos_list).min(axis=0) xmax, ymax = np.array(pos_list).max(axis=0) if 'name' in model.ttype2_template: num_names = len(model.ttype2_template['name'].basis) num_annots = len(model.ttype2_cpds['name']) if num_annots > 4: ax.set_xlim((xmin - 40, xmax + 40)) ax.set_ylim((ymin - 50, ymax + 50)) fig.set_size_inches(30, 7) else: ax.set_xlim((xmin - 42, xmax + 42)) ax.set_ylim((ymin - 50, ymax + 50)) fig.set_size_inches(23, 7) title = 'num_names=%r, num_annots=%r' % (num_names, num_annots,) else: title = '' map_assign = kwargs.get('map_assign', None) def word_insert(text): return '' if len(text) == 0 else text + ' ' top_assignments = kwargs.get('top_assignments', None) if top_assignments is not None: map_assign, map_prob = top_assignments[0] if map_assign is not None: title += '\n%sMAP: ' % (word_insert(kwargs.get('method', ''))) title += map_assign + ' @' + '%.2f%%' % (100 * map_prob,) if kwargs.get('show_title', True): pt.set_figtitle(title, size=14) for hack in hacks: hack() if has_infered: # Hack in colorbars # if ut.list_type(basis) is int: # pt.colorbar(scalars, colors, lbl='score', ticklabels=np.array(basis) + 1) # else: # pt.colorbar(scalars, colors, lbl='score', ticklabels=basis) keys = ['name', 'score'] locs = ['left', 'right'] for key, loc in zip(keys, locs): if key in ttype_colors: basis = model.ttype2_template[key].basis # scalars = colors = ttype_colors[key] scalars = ttype_scalars[key] pt.colorbar(scalars, colors, lbl=key, ticklabels=basis, ticklocation=loc)
def annotate_matches2( ibs, aid1, aid2, fm, fs, offset1=(0, 0), offset2=(0, 0), xywh2=None, # (0, 0, 0, 0), xywh1=None, # (0, 0, 0, 0), qreq_=None, **kwargs): """ TODO: use this as the main function. """ if True: aid_list = [aid1, aid2] bbox_list = [xywh1, xywh2] offset_list = [offset1, offset2] name_fm_list = [fm] name_fs_list = [fs] return annotate_matches3(ibs, aid_list, bbox_list, offset_list, name_fm_list, name_fs_list, qreq_=qreq_, **kwargs) else: # TODO: make sure all of this functionality is incorporated into annotate_matches3 in_image = kwargs.get('in_image', False) show_query = kwargs.get('show_query', True) draw_border = kwargs.get('draw_border', True) draw_lbl = kwargs.get('draw_lbl', True) notitle = kwargs.get('notitle', False) truth = ibs.get_match_truth(aid1, aid2) truth_color = vh.get_truth_color(truth) # Build title title = vh.get_query_text(ibs, None, aid2, truth, qaid=aid1, **kwargs) # Build xlbl ax = pt.gca() ph.set_plotdat(ax, 'viztype', 'matches') ph.set_plotdat(ax, 'qaid', aid1) ph.set_plotdat(ax, 'aid1', aid1) ph.set_plotdat(ax, 'aid2', aid2) if draw_lbl: name1, name2 = ibs.get_annot_names([aid1, aid2]) nid1, nid2 = ibs.get_annot_name_rowids([aid1, aid2], distinguish_unknowns=False) #lbl1 = repr(name1) + ' : ' + 'q' + vh.get_aidstrs(aid1) #lbl2 = repr(name2) + ' : ' + vh.get_aidstrs(aid2) lbl1_list = [] lbl2_list = [] if kwargs.get('show_aid', True): lbl1_list.append('q' + vh.get_aidstrs(aid1)) lbl2_list.append(vh.get_aidstrs(aid2)) if kwargs.get('show_name', True): lbl1_list.append(repr((name1))) lbl2_list.append(repr((name2))) if kwargs.get('show_nid', True): lbl1_list.append(vh.get_nidstrs(nid1)) lbl2_list.append(vh.get_nidstrs(nid2)) lbl1 = ' : '.join(lbl1_list) lbl2 = ' : '.join(lbl2_list) else: lbl1, lbl2 = None, None if vh.NO_LBL_OVERRIDE: title = '' if not notitle: pt.set_title(title, ax) # Plot annotations over images if in_image: bbox1, bbox2 = vh.get_bboxes(ibs, [aid1, aid2], [offset1, offset2]) theta1, theta2 = ibs.get_annot_thetas([aid1, aid2]) # HACK! if show_query: pt.draw_bbox(bbox1, bbox_color=pt.ORANGE, lbl=lbl1, theta=theta1) bbox_color2 = truth_color if draw_border else pt.ORANGE pt.draw_bbox(bbox2, bbox_color=bbox_color2, lbl=lbl2, theta=theta2) else: xy, w, h = pt.get_axis_xy_width_height(ax) bbox2 = (xy[0], xy[1], w, h) theta2 = 0 if xywh2 is None: #xywh2 = (xy[0], xy[1], w, h) # weird when sidebyside is off y seems to be inverted xywh2 = (0, 0, w, h) if not show_query and xywh1 is None: data_config2 = (None if qreq_ is None else qreq_.get_external_data_config2()) # FIXME, pass data in kpts2 = ibs.get_annot_kpts([aid2], config2_=data_config2)[0] #pt.draw_kpts2(kpts2.take(fm.T[1], axis=0)) # Draw any selected matches #sm_kw = dict(rect=True, colors=pt.BLUE) pt.plot_fmatch(None, xywh2, None, kpts2, fm, fs=fs, **kwargs) if draw_border: pt.draw_border(ax, truth_color, 4, offset=offset2) if draw_lbl: # Custom user lbl for chips 1 and 2 if show_query: (x1, y1, w1, h1) = xywh1 pt.absolute_lbl(x1 + w1, y1, lbl1) (x2, y2, w2, h2) = xywh2 pt.absolute_lbl(x2 + w2, y2, lbl2) if True: # No matches draw a red box if fm is None or len(fm) == 0: if draw_border: pass
def viz_netx_chipgraph(ibs, graph, fnum=None, use_image=False, layout=None, zoom=None, prog='neato', as_directed=False, augment_graph=True, layoutkw=None, framewidth=3.0, **kwargs): r""" DEPRICATE or improve Args: ibs (IBEISController): ibeis controller object graph (nx.DiGraph): fnum (int): figure number(default = None) use_image (bool): (default = False) zoom (float): (default = 0.4) Returns: ?: pos CommandLine: python -m ibeis --tf viz_netx_chipgraph --show Cand: ibeis review_tagged_joins --save figures4/mergecase.png --figsize=15,15 --clipwhite --diskshow ibeis compute_occurrence_groups --save figures4/occurgraph.png --figsize=40,40 --clipwhite --diskshow ~/code/ibeis/ibeis/algo/preproc/preproc_occurrence.py Example: >>> # DISABLE_DOCTEST >>> from ibeis.viz.viz_graph import * # NOQA >>> import ibeis >>> ibs = ibeis.opendb(defaultdb='PZ_MTEST') >>> nid_list = ibs.get_valid_nids()[0:10] >>> fnum = None >>> use_image = True >>> zoom = 0.4 >>> make_name_graph_interaction(ibs, nid_list, prog='neato') >>> ut.show_if_requested() """ import plottool as pt print('[viz_graph] drawing chip graph') fnum = pt.ensure_fnum(fnum) pt.figure(fnum=fnum, pnum=(1, 1, 1)) ax = pt.gca() if layout is None: layout = 'agraph' print('layout = %r' % (layout, )) if use_image: ensure_node_images(ibs, graph) nx.set_node_attributes(graph, 'shape', 'rect') if layoutkw is None: layoutkw = {} layoutkw['prog'] = layoutkw.get('prog', prog) layoutkw.update(kwargs) if prog == 'neato': graph = graph.to_undirected() plotinfo = pt.show_nx( graph, ax=ax, # img_dict=img_dict, layout=layout, # hacknonode=bool(use_image), layoutkw=layoutkw, as_directed=as_directed, framewidth=framewidth, ) return plotinfo
def draw_markov_model(model, fnum=None, **kwargs): import plottool as pt fnum = pt.ensure_fnum(fnum) pt.figure(fnum=fnum, doclf=True) ax = pt.gca() from pgmpy.models import MarkovModel if isinstance(model, MarkovModel): markovmodel = model else: markovmodel = model.to_markov_model() # pos = netx.pydot_layout(markovmodel) pos = netx.pygraphviz_layout(markovmodel) # Referenecs: # https://groups.google.com/forum/#!topic/networkx-discuss/FwYk0ixLDuY # pos = netx.spring_layout(markovmodel) # pos = netx.circular_layout(markovmodel) # curved-arrow # markovmodel.edge_attr['curved-arrow'] = True # markovmodel.graph.setdefault('edge', {})['splines'] = 'curved' # markovmodel.graph.setdefault('graph', {})['splines'] = 'curved' # markovmodel.graph.setdefault('edge', {})['splines'] = 'curved' node_color = [pt.NEUTRAL] * len(pos) drawkw = dict(pos=pos, ax=ax, with_labels=True, node_color=node_color, # NOQA node_size=1100) from matplotlib.patches import FancyArrowPatch, Circle import numpy as np def draw_network(G, pos, ax, sg=None): for n in G: c = Circle(pos[n], radius=10, alpha=0.5, color=pt.NEUTRAL_BLUE) ax.add_patch(c) G.node[n]['patch'] = c x, y = pos[n] pt.ax_absolute_text(x, y, n, ha='center', va='center') seen = {} for (u, v, d) in G.edges(data=True): n1 = G.node[u]['patch'] n2 = G.node[v]['patch'] rad = 0.1 if (u, v) in seen: rad = seen.get((u, v)) rad = (rad + np.sign(rad) * 0.1) * -1 alpha = 0.5 color = 'k' e = FancyArrowPatch(n1.center, n2.center, patchA=n1, patchB=n2, # arrowstyle='-|>', arrowstyle='-', connectionstyle='arc3,rad=%s' % rad, mutation_scale=10.0, lw=2, alpha=alpha, color=color) seen[(u, v)] = rad ax.add_patch(e) return e # netx.draw(markovmodel, **drawkw) draw_network(markovmodel, pos, ax) ax.autoscale() pt.plt.axis('equal') pt.plt.axis('off') if kwargs.get('show_title', True): pt.set_figtitle('Markov Model')
def annotate_matches3(ibs, aid_list, bbox_list, offset_list, name_fm_list, name_fs_list, qreq_=None, **kwargs): """ TODO: use this as the main function. """ # TODO Use this function when you clean show_matches in_image = kwargs.get('in_image', False) #show_query = kwargs.get('show_query', True) draw_border = kwargs.get('draw_border', True) draw_lbl = kwargs.get('draw_lbl', True) notitle = kwargs.get('notitle', False) # List of annotation scores for each annot in the name #printDBG('[viz] annotate_matches3()') #truth = ibs.get_match_truth(aid1, aid2) #name_equality = ( # np.array(ibs.get_annot_nids(aid_list[1:])) == ibs.get_annot_nids(aid_list[0]) #).tolist() #truth = 1 if all(name_equality) else (2 if any(name_equality) else 0) #truth_color = vh.get_truth_color(truth) ## Build title #score = kwargs.pop('score', None) #rawscore = kwargs.pop('rawscore', None) #aid2_raw_rank = kwargs.pop('aid2_raw_rank', None) #print(kwargs) #title = vh.get_query_text(ibs, None, aid2, truth, qaid=aid1, **kwargs) # Build xlbl ax = pt.gca() ph.set_plotdat(ax, 'viztype', 'multi_match') ph.set_plotdat(ax, 'qaid', aid_list[0]) ph.set_plotdat(ax, 'num_matches', len(aid_list) - 1) ph.set_plotdat(ax, 'aid_list', aid_list[1:]) for count, aid in enumerate(aid_list, start=1): ph.set_plotdat(ax, 'aid%d' % (count, ), aid) #name_equality = (ibs.get_annot_nids(aid_list[0]) == # np.array(ibs.get_annot_nids(aid_list[1:]))) #truth = 1 if np.all(name_equality) else (2 if np.any(name_equality) else 0) truth = get_multitruth(ibs, aid_list) if any(ibs.is_aid_unknown(aid_list[1:])) or ibs.is_aid_unknown( aid_list[0]): truth = ibs.const.TRUTH_UNKNOWN truth_color = vh.get_truth_color(truth) name_annot_scores = kwargs.get('name_annot_scores', None) if len(aid_list) == 2: # HACK; generalize to multple annots title = vh.get_query_text(ibs, None, aid_list[1], truth, qaid=aid_list[0], **kwargs) if not notitle: pt.set_title(title, ax) if draw_lbl: # Build labels nid_list = ibs.get_annot_nids(aid_list, distinguish_unknowns=False) name_list = ibs.get_annot_names(aid_list) lbls_list = [[] for _ in range(len(aid_list))] if kwargs.get('show_name', False): for count, (lbls, name) in enumerate(zip(lbls_list, name_list)): lbls.append(ut.repr2((name))) if kwargs.get('show_nid', True): for count, (lbls, nid) in enumerate(zip(lbls_list, nid_list)): # only label the first two images with nids LABEL_ALL_NIDS = False if count <= 1 or LABEL_ALL_NIDS: #lbls.append(vh.get_nidstrs(nid)) lbls.append(('q' if count == 0 else '') + vh.get_nidstrs(nid)) if kwargs.get('show_aid', True): for count, (lbls, aid) in enumerate(zip(lbls_list, aid_list)): lbls.append(('q' if count == 0 else '') + vh.get_aidstrs(aid)) if (kwargs.get('show_annot_score', True) and name_annot_scores is not None): max_digits = kwargs.get('score_precision', None) for (lbls, score) in zip(lbls_list[1:], name_annot_scores): lbls.append(ut.num_fmt(score, max_digits=max_digits)) lbl_list = [' : '.join(lbls) for lbls in lbls_list] else: lbl_list = [None] * len(aid_list) #pt.set_title(title, ax) # Plot annotations over images if in_image: in_image_bbox_list = vh.get_bboxes(ibs, aid_list, offset_list) in_image_theta_list = ibs.get_annot_thetas(aid_list) # HACK! #if show_query: # pt.draw_bbox(bbox1, bbox_color=pt.ORANGE, lbl=lbl1, theta=theta1) bbox_color = pt.ORANGE bbox_color = truth_color if draw_border else pt.ORANGE for bbox, theta, lbl in zip(in_image_bbox_list, in_image_theta_list, lbl_list): pt.draw_bbox(bbox, bbox_color=bbox_color, lbl=lbl, theta=theta) pass else: xy, w, h = pt.get_axis_xy_width_height(ax) #theta2 = 0 #if xywh2 is None: # #xywh2 = (xy[0], xy[1], w, h) # # weird when sidebyside is off y seems to be inverted # xywh2 = (0, 0, w, h) #if not show_query and xywh1 is None: # data_config2 = None if qreq_ is None else # qreq_.get_external_data_config2() # kpts2 = ibs.get_annot_kpts([aid2], config2_=data_config2)[0] # #pt.draw_kpts2(kpts2.take(fm.T[1], axis=0)) # # Draw any selected matches # #sm_kw = dict(rect=True, colors=pt.BLUE) # pt.plot_fmatch(None, xywh2, None, kpts2, fm, fs=fs, **kwargs) #if draw_border: # pt.draw_border(ax, truth_color, 4, offset=offset2) if draw_border: pt.draw_border(ax, color=truth_color, lw=4) if draw_lbl: # Custom user lbl for chips 1 and 2 #if show_query: # (x1, y1, w1, h1) = xywh1 # pt.absolute_lbl(x1 + w1, y1, lbl1) for bbox, lbl in zip(bbox_list, lbl_list): (x, y, w, h) = bbox pt.absolute_lbl(x + w, y, lbl) # No matches draw a red box if True: no_matches = name_fm_list is None or all( [True if fm is None else len(fm) == 0 for fm in name_fm_list]) if no_matches: xy, w, h = pt.get_axis_xy_width_height(ax) #axes_bbox = (xy[0], xy[1], w, h) if draw_border: pass
def annotate_matches2(ibs, aid1, aid2, fm, fs, offset1=(0, 0), offset2=(0, 0), xywh2=None, # (0, 0, 0, 0), xywh1=None, # (0, 0, 0, 0), qreq_=None, **kwargs): """ TODO: use this as the main function. """ if True: aid_list = [aid1, aid2] bbox_list = [xywh1, xywh2] offset_list = [offset1, offset2] name_fm_list = [fm] name_fs_list = [fs] return annotate_matches3(ibs, aid_list, bbox_list, offset_list, name_fm_list, name_fs_list, qreq_=qreq_, **kwargs) else: # TODO: make sure all of this functionality is incorporated into annotate_matches3 in_image = kwargs.get('in_image', False) show_query = kwargs.get('show_query', True) draw_border = kwargs.get('draw_border', True) draw_lbl = kwargs.get('draw_lbl', True) notitle = kwargs.get('notitle', False) truth = ibs.get_match_truth(aid1, aid2) truth_color = vh.get_truth_color(truth) # Build title title = vh.get_query_text(ibs, None, aid2, truth, qaid=aid1, **kwargs) # Build xlbl ax = pt.gca() ph.set_plotdat(ax, 'viztype', 'matches') ph.set_plotdat(ax, 'qaid', aid1) ph.set_plotdat(ax, 'aid1', aid1) ph.set_plotdat(ax, 'aid2', aid2) if draw_lbl: name1, name2 = ibs.get_annot_names([aid1, aid2]) nid1, nid2 = ibs.get_annot_name_rowids([aid1, aid2], distinguish_unknowns=False) #lbl1 = repr(name1) + ' : ' + 'q' + vh.get_aidstrs(aid1) #lbl2 = repr(name2) + ' : ' + vh.get_aidstrs(aid2) lbl1_list = [] lbl2_list = [] if kwargs.get('show_aid', True): lbl1_list.append('q' + vh.get_aidstrs(aid1)) lbl2_list.append(vh.get_aidstrs(aid2)) if kwargs.get('show_name', True): lbl1_list.append(repr((name1))) lbl2_list.append(repr((name2))) if kwargs.get('show_nid', True): lbl1_list.append(vh.get_nidstrs(nid1)) lbl2_list.append(vh.get_nidstrs(nid2)) lbl1 = ' : '.join(lbl1_list) lbl2 = ' : '.join(lbl2_list) else: lbl1, lbl2 = None, None if vh.NO_LBL_OVERRIDE: title = '' if not notitle: pt.set_title(title, ax) # Plot annotations over images if in_image: bbox1, bbox2 = vh.get_bboxes(ibs, [aid1, aid2], [offset1, offset2]) theta1, theta2 = ibs.get_annot_thetas([aid1, aid2]) # HACK! if show_query: pt.draw_bbox(bbox1, bbox_color=pt.ORANGE, lbl=lbl1, theta=theta1) bbox_color2 = truth_color if draw_border else pt.ORANGE pt.draw_bbox(bbox2, bbox_color=bbox_color2, lbl=lbl2, theta=theta2) else: xy, w, h = pt.get_axis_xy_width_height(ax) bbox2 = (xy[0], xy[1], w, h) theta2 = 0 if xywh2 is None: #xywh2 = (xy[0], xy[1], w, h) # weird when sidebyside is off y seems to be inverted xywh2 = (0, 0, w, h) if not show_query and xywh1 is None: data_config2 = (None if qreq_ is None else qreq_.get_external_data_config2()) # FIXME, pass data in kpts2 = ibs.get_annot_kpts([aid2], config2_=data_config2)[0] #pt.draw_kpts2(kpts2.take(fm.T[1], axis=0)) # Draw any selected matches #sm_kw = dict(rect=True, colors=pt.BLUE) pt.plot_fmatch(None, xywh2, None, kpts2, fm, fs=fs, **kwargs) if draw_border: pt.draw_border(ax, truth_color, 4, offset=offset2) if draw_lbl: # Custom user lbl for chips 1 and 2 if show_query: (x1, y1, w1, h1) = xywh1 pt.absolute_lbl(x1 + w1, y1, lbl1) (x2, y2, w2, h2) = xywh2 pt.absolute_lbl(x2 + w2, y2, lbl2) if True: # No matches draw a red box if fm is None or len(fm) == 0: if draw_border: pass
def show_name_matches(ibs, qaid, name_daid_list, name_fm_list, name_fs_list, name_H1_list, name_featflag_list, qreq_=None, **kwargs): """ Called from chip_match.py Args: ibs (IBEISController): ibeis controller object qaid (int): query annotation id name_daid_list (list): name_fm_list (list): name_fs_list (list): name_H1_list (list): name_featflag_list (list): qreq_ (QueryRequest): query request object with hyper-parameters(default = None) Kwargs: draw_fmatches, name_rank, fnum, pnum, colorbar_, nonvote_mode, fastmode, show_matches, fs, fm_norm, lbl1, lbl2, rect, draw_border, cmap, H1, H2, scale_factor1, scale_factor2, draw_pts, draw_ell, draw_lines, show_nMatches, all_kpts, in_image, show_query, draw_lbl, name_annot_scores, score, rawscore, aid2_raw_rank, show_name, show_nid, show_aid, show_annot_score, show_truth, name_score, show_name_score, show_name_rank, show_timedelta CommandLine: python -m ibeis.viz.viz_matches --exec-show_name_matches python -m ibeis.viz.viz_matches --test-show_name_matches --show Example: >>> # DISABLE_DOCTEST >>> from ibeis.viz.viz_matches import * # NOQA >>> from ibeis.algo.hots import chip_match >>> from ibeis.algo.hots import name_scoring >>> import vtool as vt >>> from ibeis.algo.hots import _pipeline_helpers as plh # NOQA >>> import numpy as np >>> func = chip_match.ChipMatch.show_single_namematch >>> sourcecode = ut.get_func_sourcecode(func, stripdef=True, stripret=True, >>> strip_docstr=True) >>> setup = ut.regex_replace('viz_matches.show_name_matches', '#', sourcecode) >>> homog = False >>> print(ut.indent(setup, '>>> ')) >>> ibs, qreq_, cm_list = plh.testdata_post_sver('PZ_MTEST', qaid_list=[1]) >>> cm = cm_list[0] >>> cm.score_nsum(qreq_) >>> dnid = ibs.get_annot_nids(cm.qaid) >>> # +--- COPIED SECTION >>> locals_ = locals() >>> var_list = ut.exec_func_src( >>> func, locals_=locals_, >>> sentinal='name_annot_scores = cm.annot_score_list.take(sorted_groupxs') >>> exec(ut.execstr_dict(var_list)) >>> # L___ COPIED SECTION >>> kwargs = {} >>> show_name_matches(ibs, qaid, name_daid_list, name_fm_list, >>> name_fs_list, name_h1_list, name_featflag_list, >>> qreq_=qreq_, **kwargs) >>> ut.quit_if_noshow() >>> ut.show_if_requested() """ #print("SHOW NAME MATCHES") #print(ut.repr2(kwargs, nl=True)) #from ibeis import constants as const from ibeis import tag_funcs draw_fmatches = kwargs.pop('draw_fmatches', True) rchip1, kpts1 = get_query_annot_pair_info(ibs, qaid, qreq_, draw_fmatches) rchip2_list, kpts2_list = get_data_annot_pair_info(ibs, name_daid_list, qreq_, draw_fmatches) fm_list = name_fm_list fs_list = name_fs_list featflag_list = name_featflag_list offset_list, sf_list, bbox_list = show_multichip_match( rchip1, rchip2_list, kpts1, kpts2_list, fm_list, fs_list, featflag_list, **kwargs) aid_list = [qaid] + name_daid_list annotate_matches3(ibs, aid_list, bbox_list, offset_list, name_fm_list, name_fs_list, qreq_=None, **kwargs) ax = pt.gca() title = vh.get_query_text(ibs, None, name_daid_list, False, qaid=qaid, **kwargs) pt.set_title(title, ax) # Case tags annotmatch_rowid_list = ibs.get_annotmatch_rowid_from_superkey( [qaid] * len(name_daid_list), name_daid_list) annotmatch_rowid_list = ut.filter_Nones(annotmatch_rowid_list) tags_list = ibs.get_annotmatch_case_tags(annotmatch_rowid_list) if not ut.get_argflag('--show'): # False: tags_list = tag_funcs.consolodate_annotmatch_tags(tags_list) tag_list = ut.unique_ordered(ut.flatten(tags_list)) name_rank = kwargs.get('name_rank', None) truth = get_multitruth(ibs, aid_list) xlabel = {1: 'Correct ID', 0: 'Incorrect ID', 2: 'Unknown ID'}[truth] if False: if name_rank is None: xlabel = {1: 'Genuine', 0: 'Imposter', 2: 'Unknown'}[truth] #xlabel = {1: 'True', 0: 'False', 2: 'Unknown'}[truth] else: if name_rank == 0: xlabel = { 1: 'True Positive', 0: 'False Positive', 2: 'Unknown' }[truth] else: xlabel = { 1: 'False Negative', 0: 'True Negative', 2: 'Unknown' }[truth] if len(tag_list) > 0: xlabel += '\n' + ', '.join(tag_list) pt.set_xlabel(xlabel) return ax
def plot_chip(self, aid, nRows, nCols, px, **kwargs): """ Plots an individual chip in a subaxis """ ibs = self.ibs enable_chip_title_prefix = ut.is_developer() #enable_chip_title_prefix = False if aid in self.comp_aids: score = self.cm.get_annot_scores([aid])[0] rawscore = self.cm.get_annot_scores([aid])[0] title_suf = kwargs.get('title_suffix', '') if score != rawscore: if score is None: title_suf += '\n score=____' else: title_suf += '\n score=%0.2f' % score title_suf += '\n rawscore=%0.2f' % rawscore else: title_suf = kwargs.get('title_suffix', '') if enable_chip_title_prefix: title_suf = '\n' + title_suf #nid = ibs.get_annot_name_rowids(aid) viz_chip_kw = { 'fnum': self.fnum, 'pnum': (nRows, nCols, px), 'nokpts': True, 'show_gname': False, 'show_exemplar': False, 'show_num_gt': False, 'show_gname': False, 'title_suffix': title_suf, # 'text_color': kwargs.get('color'), ### #'show_name': False, #'show_aidstr': False, 'enable_chip_title_prefix': enable_chip_title_prefix, 'show_name': True, 'show_aidstr': True, 'show_yawtext': True, 'show_quality_text': True, } viz_chip.show_chip(ibs, aid, **viz_chip_kw) ax = pt.gca() if kwargs.get('make_buttons', True): divider = pt.ensure_divider(ax) butkw = { 'divider': divider, 'size': '13%' } self.aid2_ax = {} self.aid2_border = {} if aid in self.comp_aids: callback = partial(self.select, aid) self.append_button('Select This Animal', callback=callback, **butkw) #Hack to toggle colors if aid in self.aid_checkbox_states: #If we are selecting it, then make it green, otherwise change it back to grey if self.aid_checkbox_states[aid]: border = pt.draw_border(ax, color=(0, 1, 0), lw=4) else: border = pt.draw_border(ax, color=(.7, .7, .7), lw=4) self.aid2_border[aid] = border else: self.aid_checkbox_states[aid] = False self.append_button('Examine', callback=partial(self.examine, aid), **butkw)