args = parser.parse_args() training_seed = args.training_seed if args.log: from pnet.vzlog import default as vz ag.set_verbose(True) sup_ims = [] sup_labels = [] net = None layers = [ #pnet.IntensityThresholdLayer(), pnet.EdgeLayer(k=5, radius=1, spread='orthogonal', minimum_contrast=0.05), pnet.PartsLayer(100, (6, 6), settings=dict(outer_frame=0, threshold=40, samples_per_image=40, max_samples=1000000, min_prob=0.005, )), pnet.ExtensionPartsLayer(num_parts = 100, num_components = 10, part_shape = (12,12), lowerLayerShape = (6,6)), pnet.PoolingLayer(shape=(4,4), strides=(4, 4)), pnet.MixtureClassificationLayer(n_components=1, min_prob=0.0001,block_size=200), #pnet.SVMClassificationLayer(C=None) ] net = pnet.PartsNet(layers) digits = range(10) ims = ag.io.load_mnist('training', selection=slice(10000), return_labels=False) net.train(ims)
data = np.load(dataFileName) training_seed = args.seed for i in range(11): print("Inside") layers = [ pnet.EdgeLayer(k=5, radius=1, spread='orthogonal', minimum_contrast=0.05), # pnet.PartsLayer( numParts, (patchSize, patchSize), settings=dict( outer_frame=0, #em_seed=training_seed, threshold=40, samples_per_image=40, max_samples=1000000, min_prob=0.005, )), pnet.PoolingLayer(shape=(4, 4), strides=(4, 4)), pnet.SVMClassificationLayer(C=None) ] net = pnet.PartsNet(layers) digits = range(10) print('Extracting subsets...') ims10k = data[:10000]