Beispiel #1
0
def show_data_augment(index):
    images_list = get_all_images_list("train")

    # Check index is valid
    if index >= len(images_list):
        print("Index %s out of range. Max index is %s" %
              (index, len(images_list) - 1))
        exit(-1)

    file_path, filename = images_list[index]
    dicom_data = get_dicom_data(file_path)
    image = tf.convert_to_tensor(dicom_data.pixel_array, dtype=tf.float32)
    image = tf.reshape(image, (1, image_size, image_size, 1))

    # Display the final image
    fig = plt.figure(figsize=(18, 12))
    fig.canvas.set_window_title("Show data augment %s" % filename)

    show_subplot(plt, 1, image, "Original Image")
    show_subplot(plt, 2, data_augment.get_tall_image(image), "Tall Image")
    show_subplot(plt, 3, data_augment.get_large_image(image), "Large Image")
    show_subplot(plt, 4, data_augment.get_zoomed_image(image), "Zoomed Image")
    show_subplot(plt, 5, data_augment.get_mirror_image(image), "Mirror Image")
    show_subplot(plt, 6, data_augment.rotate_and_zoom_image(image),
                 "Rotated and Zoomed Image")
    show_subplot(plt, 7, data_augment.smooth_image(image), "Smooth Image")
    show_subplot(plt, 8, data_augment.change_image_brightness(image),
                 "Bright Image")

    plt.show()
def show_true_mask(index):
    images_list = get_all_images_list("train")

    # Check index is valid
    if index >= len(images_list):
        print("Index %s out of range. Max index is %s" % (index, len(images_list) - 1))
        exit(-1)

    file_path, filename = images_list[index]
    dicom_data = get_dicom_data(file_path) # True mask is only known for the training dataset
    mask = get_true_mask(filename)

    if np.max(mask) == 0:
        print("No Pneumothorax on %s" % filename)
        exit(0)

    pixels = np.array(dicom_data.pixel_array) * (1 - .5 * mask)

    # Display the final image
    fig = plt.figure(figsize=(18, 12))
    fig.canvas.set_window_title("Show True Mask of %s" % filename)

    plt.imshow(pixels)

    plt.show()
def show_prediction(folder, index):
    images_list = get_all_images_list(folder)

    # Check index is valid
    if index >= len(images_list):
        print("Index %s out of range. Max index is %s" %
              (index, len(images_list) - 1))
        exit(-1)

    filepath, filename = images_list[index]
    dicom_data = get_dicom_data(filepath)

    # Display the final image
    fig = plt.figure(figsize=(18, 12))
    fig.canvas.set_window_title("Show Predicted Mask of %s" % filename)

    plt.subplot(1, 2, 1)
    pixels = dicom_data.pixel_array
    if (folder == "train"):
        true_mask = get_true_mask(filename)
        pixels = np.array(pixels) * (1 - .5 * true_mask)
    plt.imshow(pixels)

    plt.subplot(1, 2, 2)
    predictions = get_segmentation_prediction(filepath)

    plt.imshow(predictions)

    plt.show()
def get_segmentation_prediction(filepath):
    "Returns the prediction as a numpy array of shape (image_size, image_size) for a given filepath"
    dicom_data = get_dicom_data(filepath)
    image = format_pixel_array_for_tf(dicom_data.pixel_array)
    predicted_logits = unet.predict(image, steps=1)
    predictions = tf.convert_to_tensor(predicted_logits, dtype=tf.float32)
    predictions = tf.image.resize(predicted_logits, (image_size, image_size),
                                  align_corners=True)
    predictions = sess.run(predictions)
    predictions = np.reshape(predictions, (image_size, image_size))
    return predictions
Beispiel #5
0
def get_classification_prediction(filepath):
    """
    Returns the prediction as a numpy array of shape (image_size, image_size) for a given filepath\n
    Please note that due a bug loading the models, get_classification_prediction currenly uses the body models.
    Please fix the bug and use the head models of the hydra
    """
    dicom_data = get_dicom_data(filepath)
    image = format_pixel_array_for_tf(dicom_data.pixel_array)
    predictions = [model.predict(image, steps=1) for model in all_models]
    predictions = [p[0][1] for p in predictions]
    return predictions
Beispiel #6
0
 def training_generator(graph, starting_index=0):
     """
     Yields a tuple (image, true_mask). Image is a tensor of shape (1, tf_image_size, tf_image_size, 3) and true_mask is a tensor of shape (1, image_size, image_size)\n
     Due to the way generators work, it is required to specify the graph to work on
     """
     images_list = images_list_root[starting_index:]
     for (filepath, filename) in images_list:
         with graph.as_default():
             dicom_data = get_dicom_data(filepath)
             image = format_pixel_array_for_tf(dicom_data.pixel_array)
             true_mask = get_true_mask(filename)
             true_mask = tf.convert_to_tensor(true_mask, dtype=tf.float32)
             true_mask = tf.reshape(true_mask, (1, image_size, image_size, 1))
         yield ([image], [true_mask])
Beispiel #7
0
def show_data(folder, index):
    images_list = get_all_images_list(folder)

    # Check index is valid
    if index >= len(images_list):
        print("Index %s out of range. Max index is %s" % (index, len(images_list) - 1))
        exit(-1)

    file_path, filename = images_list[index]
    dicom_data = get_dicom_data(file_path)

    # Display the data and image through matplotlib
    plt.imshow(dicom_data.pixel_array)
    print("File: %s" % filename)
    print(dicom_data)
    plt.show()
Beispiel #8
0
 def training_generator(graph,
                        data_augment_technique="none",
                        starting_index=0):
     """
     Yields a tuple (image, is_there_pneumothorax). Image is a tensor of shape (1, tf_image_size, tf_image_size, 3) and true_mask is a tensor of shape (1, 2)\n
     Due to the way generators work, it is required to specify the graph to work on\n
     data_augment_technique is the name of the technique used by data_augmentation (see data_augment.py -> random_data_augment)
     """
     images_list = images_list_root[starting_index:]
     for (filepath, filename) in images_list:
         with graph.as_default():
             dicom_data = get_dicom_data(filepath)
             image = dicom_data.pixel_array
             image = format_pixel_array_for_tf(
                 image, apply_data_augment_technique=data_augment_technique)
             is_there_pneumothorax = get_image_label(filename)
             is_there_pneumothorax = [[
                 1 - is_there_pneumothorax, is_there_pneumothorax
             ]]
             is_there_pneumothorax = tf.convert_to_tensor(
                 is_there_pneumothorax, dtype=tf.float32)
         yield ([image], [is_there_pneumothorax])