Beispiel #1
0
 def __init__(self, points, features, is_training, setting):
     PointCNN.__init__(self, points, features, is_training, setting)
     self.point_features = self.layer_fts[1]
     fc_mean = tf.reduce_mean(self.fc_layers[-1], axis=1, keepdims=True, name='fc_mean')
     self.fc_layers[-1] = tf.cond(is_training, lambda: self.fc_layers[-1], lambda: fc_mean)
     self.logits = pf.dense(self.fc_layers[-1], setting.num_class, 'logits',
                            is_training, with_bn=False, activation=None)
Beispiel #2
0
 def __init__(self, points, features, is_training, setting):
     PointCNN.__init__(self, points, features, is_training, setting)
     self.logits = pf.dense(self.fc_layers[-1],
                            setting.num_class,
                            'logits',
                            is_training,
                            with_bn=False,
                            activation=None)
    def __init__(self, points, features, is_training, setting):

        print("points", points.get_shape())
        PointCNN.__init__(self, points, features, is_training, setting)

        per_loc_bin_num = int(setting.LOC_SCOPE / setting.LOC_BIN_SIZE) * 2
        loc_y_bin_num = int(setting.LOC_Y_SCOPE / setting.LOC_Y_BIN_SIZE) * 2
        reg_channel = per_loc_bin_num * 4 + setting.NUM_HEAD_BIN * 2 + 3
        reg_channel += (1 if not setting.LOC_Y_BY_BIN else loc_y_bin_num * 2)

        channel_in = (self.layer_fts[-1]
                      if not setting.IS_FC_INPUT else self.fc_layers[-1])

        #Normalizing dimension for 1D
        channel_in = tf.reduce_mean(channel_in,
                                    axis=1,
                                    keep_dims=True,
                                    name='fc_mean')

        print("channel_in", channel_in.shape)
        pre_channel = channel_in
        REG_FC = [256, 256]
        for k in range(0, len(setting.REG_FC)):

            pre_channel = pf.conv1d(pre_channel,
                                    setting.REG_FC[k],
                                    "CLS_LAYERS_" + str(k),
                                    is_training,
                                    with_bn=True)

        #pre_channel = pf.dense(pre_channel, reg_channel, "CLS_LAYERS_FC", is_training, with_bn=False, activation=None)

        pre_channel = pf.conv1d(pre_channel,
                                reg_channel,
                                "CLS_LAYERS_FC",
                                is_training,
                                activation=None)

        if setting.DP_RATIO >= 0:
            pre_channel = tf.layers.dropout(pre_channel,
                                            setting.DP_RATIO,
                                            training=is_training,
                                            name='fc_reg_drop')

        #print("pre_channel", reg_channel, pre_channel.get_shape())
        self.logits = tf.transpose(pre_channel, perm=(0, 2, 1))
        self.logits = tf.squeeze(self.logits, axis=-1)
Beispiel #4
0
 def __init__(self, points, features, is_training, setting):
     PointCNN.__init__(self, points, features, is_training, setting)
     with tf.variable_scope(setting.network_name):
         batch_size = points.get_shape()[0].value
         fc_flatten = tf.reshape(self.fc_layers[-1], [batch_size, -1])
         fc_flatten = tf.concat([fc_flatten, features[:, 0, :]], axis=1)
         fc1 = pf.dense(fc_flatten, 512, 'extra_fc_1', is_training)
         # fc1_drop = tf.layers.dropout(fc1, 0.0, training=is_training, name='extra_fc_1_drop')
         # self.fc_layers.append(fc1_drop)
         fc2 = pf.dense(fc1, 256, 'extra_fc_2', is_training)
         self.output = pf.dense(fc2,
                                3 + NUM_HEADING_BIN * 2 +
                                NUM_SIZE_CLUSTER * 4,
                                'output',
                                is_training,
                                with_bn=False,
                                activation=None)
Beispiel #5
0
    def __init__(self, points, features, is_training, setting):
        PointCNN.__init__(self, points, features, is_training, setting)
        fc_mean = tf.reduce_mean(self.fc_layers[-1],
                                 axis=1,
                                 keep_dims=True,
                                 name='fc_mean')

        self.feature_list = tf.reshape(self.feature_list, [128, 61440])

        self.feature_list_A = self.feature_list[0:64]
        self.feature_list_B = self.feature_list[64:128]

        self.fc_layers[-1] = tf.cond(is_training, lambda: self.fc_layers[-1],
                                     lambda: fc_mean)  #最后一层连接

        self.logits = pf.dense(self.fc_layers[-1],
                               setting.num_class,
                               'logits',
                               is_training,
                               with_bn=False,
                               activation=None)
 def __init__(self, points, features, num_class, is_training, setting):
     PointCNN.__init__(self, points, features, num_class, is_training,
                       setting, 'segmentation')
Beispiel #7
0
    './mnist/train_files.txt', './mnist/test_files.txt')

nd_iter = mx.io.NDArrayIter(data={'data': data_train},
                            label={'softmax_label': label_train},
                            batch_size=setting.batch_size)

num_train = data_train.shape[0]
point_num = data_train.shape[1]

batch_num_per_epoch = int(math.ceil(num_train / setting.batch_size))
batch_num = batch_num_per_epoch * setting.num_epochs
batch_size_train = setting.batch_size

ctx = [mx.gpu(0)]
net = PointCNN(setting,
               'classification',
               with_feature=False,
               prefix="PointCNN_")
net.hybridize()

sym_max_points = point_num

var = mx.sym.var('data',
                 shape=(batch_size_train // len(ctx), sym_max_points, 3))

probs = net(var)
probs_shape = get_shape(probs)
label_var = mx.sym.var('softmax_label',
                       shape=(batch_size_train // len(ctx), probs_shape[1]))

loss = get_loss_sym(probs, label_var)