Beispiel #1
0
    def __init__(self):
        super(Net_D, self).__init__()
        self.sa1_module = SAModule(0.5, 0.1, MLP([3 + 3, 64, 64, 128]))
        self.sa2_module = SAModule(0.5, 0.5, MLP([128 + 3, 128, 128, 256]))

        self.lin1 = torch.nn.Linear(256, 128)
        self.lin3 = torch.nn.Linear(128, 1)
    def __init__(self, feature_num=1024, k=20, aggr='max'):
        super().__init__()
        self.conv1 = DynamicEdgeConv(MLP([2 * 3, 64]), k, aggr)
        self.conv2 = DynamicEdgeConv(MLP([2 * 64, 64]), k, aggr)
        self.conv3 = DynamicEdgeConv(MLP([2 * 64, 128]), k, aggr)
        self.conv4 = DynamicEdgeConv(MLP([2 * 128, 256]), k, aggr)

        self.lin1 = MLP([64 + 64 + 128 + 256, feature_num])
    def __init__(self, out_channels, k=20, aggr='max'):
        super().__init__()

        self.conv1 = DynamicEdgeConv(MLP([2 * 3, 64, 64, 64]), k, aggr)
        self.conv2 = DynamicEdgeConv(MLP([2 * 64, 128]), k, aggr)
        self.lin1 = MLP([128 + 64, 1024])

        self.mlp = Seq(MLP([1024, 512]), Dropout(0.5), MLP([512, 256]),
                       Dropout(0.5), Lin(256, out_channels))
Beispiel #4
0
    def __init__(self, out_channels, k=10, aggr='max'):
        super(Net, self).__init__()
        self.transform_net = STN3d()
        self.k = k
        self.conv0 = DiffGCNBlock(3, 64, 20, 1)
        self.conv1 = DiffGCNBlock(64, 64, 5, 2, pool=True)
        self.conv2 = DiffGCNBlock(64, 64, 5, 2, pool=True)
        self.conv3 = DiffGCNBlock(64, 128, 5, 2, pool=True)

        self.lin1 = MLP([64 * 3 + 128, 2048])

        self.mlp = Seq(MLP([2048 + 64 * 3 + 128 + 16, 512]), Dropout(0.5),
                       MLP([512, 256]), Dropout(0.5), MLP([256, 128]),
                       Dropout(0.5), Lin(128, out_channels))
Beispiel #5
0
    def __init__(self, out_channels, k=30, aggr='max'):
        super(Net, self).__init__()

        self.conv1 = DynamicEdgeConv(MLP([2 * 3, 64, 64]), k, aggr)
        self.conv2 = DynamicEdgeConv(MLP([2 * 64, 64, 64]), k, aggr)
        self.conv3 = DynamicEdgeConv(MLP([2 * 64, 64, 64]), k, aggr)
        self.lin1 = MLP([3 * 64, 1024])

        self.mlp = Seq(MLP([1024, 256]), Dropout(0.5), MLP([256, 128]),
                       Dropout(0.5), Lin(128, out_channels))
Beispiel #6
0
    def __init__(self, num_classes):
        super(Net, self).__init__()
        self.sa1_module = SAModule(0.2, 0.2, MLP([3, 64, 64, 128]))
        self.sa2_module = SAModule(0.25, 0.4, MLP([128 + 3, 128, 128, 256]))
        self.sa3_module = GlobalSAModule(MLP([256 + 3, 256, 512, 1024]))

        self.fp3_module = FPModule(1, MLP([1024 + 256, 256, 256]))
        self.fp2_module = FPModule(3, MLP([256 + 128, 256, 128]))
        self.fp1_module = FPModule(3, MLP([128, 128, 128, 128]))

        self.lin1 = torch.nn.Linear(128, 128)
        self.lin2 = torch.nn.Linear(128, 128)
        self.lin3 = torch.nn.Linear(128, num_classes)
    def __init__(self, num_classes):
        super(Net, self).__init__()

        # Input channels account for both `pos` and node features.
        self.sa1_module = SAModule(0.2, 0.2, MLP([3 + 3, 64, 64, 128]))
        self.sa2_module = SAModule(0.25, 0.4, MLP([128 + 3, 128, 128, 256]))
        self.sa3_module = GlobalSAModule(MLP([256 + 3, 256, 512, 1024]))

        self.fp3_module = FPModule(1, MLP([1024 + 256, 256, 256]))
        self.fp2_module = FPModule(3, MLP([256 + 128, 256, 128]))
        self.fp1_module = FPModule(3, MLP([128 + 3, 128, 128, 128]))

        self.lin1 = torch.nn.Linear(128, 128)
        self.lin2 = torch.nn.Linear(128, 128)
        self.lin3 = torch.nn.Linear(128, num_classes)
 def __init__(self, feature_num=1024, out_channels=10, aggr='max'):
     super().__init__()
     self.mlp = Seq(MLP([2 * feature_num, 512]), Dropout(0.5),
                    MLP([512, 256]), Dropout(0.5), Lin(256, out_channels))