Beispiel #1
0
    def __init__(self, args):
        class Config:
            pass
        self._config = Config()
        self._config.context = 'cpu'
        self._config.device_id = 0
        self._config.columns_size = 2
        self._config.x_length = args.x_length
        self._config.mlp_model_params_path = args.mlp_model_params_path
        self._config.labels_path = args.labels_path

        if not os.path.isfile(self._config.mlp_model_params_path):
            logger.error("Model params path {} is not found.".format(self._config.mlp_model_params_path))
            sys.exit(-1)
        else:
            logger.info("Path of the model parameters file is {}.".format(self._config.mlp_model_params_path))
        if not os.path.isfile(self._config.labels_path):
            logger.error("Labels path {} is not found.".format(self._config.labels_path))
            sys.exit(-1)
        else:
            logger.info("Path of the labels file is {}.".format(self._config.labels_path))

        seed(0)
        logger.info("Running in %s" % self._config.context)
        self._ctx = get_extension_context(self._config.context, device_id = self._config.device_id)
        nn.set_default_context(self._ctx)
        nn.clear_parameters()
        self._mlp = MLP(self._config)
        self._labels = None
        with open(self._config.labels_path) as f:
            self._labels = f.readlines()
        self._points_buf = pointsbuffer.PointsBuffer()
Beispiel #2
0
 def __init__(self):
     self._minx = 0.0
     self._miny = 0.0
     self._maxx = 255.0
     self._maxy = 255.0
     self._sigma = 32.0
     self._factor = 1.0
     self._homography_distort_range = 32.0
     self._distortion_level0_repeat = 8
     self._distortion_level1_repeat = 8
     self._points_buf = pointsbuffer.PointsBuffer()
     self._max_scale = (self._maxy - self._miny + 1.0) * 0.5 \
             if (self._maxx - self._minx) > (self._maxy - self._miny) \
             else (self._maxx - self._minx + 1.0) * 0.5
     random.seed()
Beispiel #3
0
    def __init__(self, args):
        self._config = args

        self._minx = 0
        self._miny = 0
        self._maxx = 255
        self._maxy = 255
        self._output_dir = None
        self._x = 0
        self._y = 0
        self._points = []
        self._pred_points = []
        self._recognizer = None
        self._window = None
        self._canvas = None
        self._result_area = None
        self._result_txt = None
        self._points_buf = pointsbuffer.PointsBuffer()
        self._initWindow()
Beispiel #4
0
    def __init__(self, args):
        class Config:
            pass

        self._config = Config()
        self._config.process = 'infer'
        self._config.columns_size = 2
        self._config.x_length = args.x_length
        self._config.x_input_length = args.x_input_length
        self._config.x_split_step = args.x_split_step
        self._config.width = args.width
        self._config.height = args.height
        self._config.lstm_units = args.lstm_units
        self._config.batch_size = 1
        self._config.epochs = 0
        self._config.validation_split = 0.0
        self._config.learning_rate = 0.0
        self._config.training_dataset_path = None
        self._config.evaluation_dataset_path = None

        self._net_type = args.net
        logger.info("Network type is {}.".format(self._net_type))
        self._mlp = None
        self._lenet = None
        self._lstm = None

        if self._net_type == 'mlp':
            self._config.model_params_path = args.mlp_model_params_path
            if not os.path.isfile(self._config.model_params_path):
                logger.error("Model params path {} is not found.".format(
                    self._config.model_params_path))
            else:
                logger.info("Path of the model parameters file is {}.".format(
                    self._config.model_params_path))
            self._mlp = MLP(self._config)
            self._mlp.init_for_infer()
        elif self._net_type == 'lenet':
            self._config.model_params_path = args.lenet_model_params_path
            if not os.path.isfile(self._config.model_params_path):
                logger.error("Model params path {} is not found.".format(
                    self._config.model_params_path))
            else:
                logger.info("Path of the model parameters file is {}.".format(
                    self._config.model_params_path))
            self._lenet = LeNet(self._config)
            self._lenet.init_for_infer()
        elif self._net_type == 'mlp-with-lstm':
            self._config.model_params_path = args.lstm_model_params_path
            if not os.path.isfile(self._config.model_params_path):
                logger.error("Model params path {} is not found.".format(
                    self._config.model_params_path))
            else:
                logger.info("Path of the model parameters file is {}.".format(
                    self._config.model_params_path))
            self._lstm = LSTM(self._config)
            self._lstm.init_for_infer()
            self._config.model_params_path = args.mlp_model_params_path
            if not os.path.isfile(self._config.model_params_path):
                logger.error("Model params path {} is not found.".format(
                    self._config.model_params_path))
            else:
                logger.info("Path of the model parameters file is {}.".format(
                    self._config.model_params_path))
            self._mlp = MLP(self._config)
            self._mlp.init_for_infer()
        else:
            raise ValueError("Unknown network type {}".format(self._net_type))
        self._labels = None
        self._labels_path = args.labels_path
        if not os.path.isfile(self._labels_path):
            logger.error("Labels path {} is not found.".format(
                self._labels_path))
        else:
            logger.info("Path of the labels file is {}.".format(
                self._labels_path))
            with open(self._labels_path) as f:
                self._labels = f.readlines()
        self._points_buf = pointsbuffer.PointsBuffer()
Beispiel #5
0
    def __init__(self, args):
        class Config:
            pass

        self._config = Config()
        self._config.context = args.context
        self._config.device_id = args.device_id
        self._config.process = 'infer'
        self._config.columns_size = 2
        self._config.x_length = args.x_length
        self._config.x_input_length = args.x_input_length
        self._config.x_output_length = args.x_output_length
        self._config.x_split_step = args.x_split_step
        self._config.width = args.width
        self._config.height = args.height
        self._config.lstm_unit_name = args.lstm_unit_name
        self._config.lstm_units = args.lstm_units
        self._config.batch_size = 1
        self._config.max_iter = 0
        self._config.learning_rate = 0.0
        self._config.weight_decay = 0.0
        self._config.val_interval = 0
        self._config.val_iter = 0
        self._config.monitor_path = '.'
        self._config.training_dataset_path = None
        self._config.validation_dataset_path = None
        self._config.evaluation_dataset_path = None

        seed(0)
        if self._config.context is None:
            self._config.context = 'cpu'
        logger.info("Running in %s" % self._config.context)
        self._ctx = get_extension_context(self._config.context,
                                          device_id=self._config.device_id)
        nn.set_default_context(self._ctx)

        self._net_type = args.net
        logger.info("Network type is {}.".format(self._net_type))
        self._mlp = None
        self._lenet = None
        self._lstm = None

        nn.clear_parameters()
        if self._net_type == 'mlp':
            self._config.model_params_path = args.mlp_model_params_path
            if not os.path.isfile(self._config.model_params_path):
                logger.error("Model params path {} is not found.".format(
                    self._config.model_params_path))
            else:
                logger.info("Path of the model parameters file is {}.".format(
                    self._config.model_params_path))
            self._mlp = MLP(self._config)
            self._mlp.init_for_infer()
        elif self._net_type == 'lenet':
            self._config.model_params_path = args.lenet_model_params_path
            if not os.path.isfile(self._config.model_params_path):
                logger.error("Model params path {} is not found.".format(
                    self._config.model_params_path))
            else:
                logger.info("Path of the model parameters file is {}.".format(
                    self._config.model_params_path))
            self._lenet = LeNet(self._config)
            self._lenet.init_for_infer()
        elif self._net_type == 'mlp-with-lstm':
            self._config.model_params_path = args.lstm_model_params_path
            if not os.path.isfile(self._config.model_params_path):
                logger.error("Model params path {} is not found.".format(
                    self._config.model_params_path))
            else:
                logger.info("Path of the model parameters file is {}.".format(
                    self._config.model_params_path))
            self._lstm = LSTM(self._config)
            self._lstm.init_for_infer()
            self._config.model_params_path = args.mlp_model_params_path
            if not os.path.isfile(self._config.model_params_path):
                logger.error("Model params path {} is not found.".format(
                    self._config.model_params_path))
            else:
                logger.info("Path of the model parameters file is {}.".format(
                    self._config.model_params_path))
            self._mlp = MLP(self._config)
            self._mlp.init_for_infer()
        else:
            raise ValueError("Unknown network type {}".format(self._net_type))
        self._labels = None
        self._labels_path = args.labels_path
        if not os.path.isfile(self._labels_path):
            logger.error("Labels path {} is not found.".format(
                self._labels_path))
        else:
            logger.info("Path of the labels file is {}.".format(
                self._labels_path))
            with open(self._labels_path) as f:
                self._labels = f.readlines()
        self._points_buf = pointsbuffer.PointsBuffer()