Beispiel #1
0
def from_dicts(dicts: Sequence[Dict[str, Any]]) -> DataFrame:
    """
    Construct a DataFrame from a sequence of dictionaries.

    Parameters
    ----------
    dicts
        Sequence with dictionaries mapping column name to value

    Returns
    -------
    DataFrame

    Examples
    --------

    >>> data = [{"a": 1, "b": 4}, {"a": 2, "b": 5}, {"a": 3, "b": 6}]
    >>> df = pl.from_dicts(data)
    >>> df
    shape: (3, 2)
    ┌─────┬─────┐
    │ a   ┆ b   │
    │ --- ┆ --- │
    │ i64 ┆ i64 │
    ╞═════╪═════╡
    │ 1   ┆ 4   │
    ├╌╌╌╌╌┼╌╌╌╌╌┤
    │ 2   ┆ 5   │
    ├╌╌╌╌╌┼╌╌╌╌╌┤
    │ 3   ┆ 6   │
    └─────┴─────┘

    """
    return DataFrame._from_dicts(dicts)
Beispiel #2
0
def from_dicts(dicts: Sequence[dict[str, Any]],
               infer_schema_length: int | None = 50) -> DataFrame:
    """
    Construct a DataFrame from a sequence of dictionaries.

    Parameters
    ----------
    dicts
        Sequence with dictionaries mapping column name to value
    infer_schema_length
        How many dictionaries/rows to scan to determine the data types
        if set to `None` all rows are scanned. This will be slow.

    Returns
    -------
    DataFrame

    Examples
    --------
    >>> data = [{"a": 1, "b": 4}, {"a": 2, "b": 5}, {"a": 3, "b": 6}]
    >>> df = pl.from_dicts(data)
    >>> df
    shape: (3, 2)
    ┌─────┬─────┐
    │ a   ┆ b   │
    │ --- ┆ --- │
    │ i64 ┆ i64 │
    ╞═════╪═════╡
    │ 1   ┆ 4   │
    ├╌╌╌╌╌┼╌╌╌╌╌┤
    │ 2   ┆ 5   │
    ├╌╌╌╌╌┼╌╌╌╌╌┤
    │ 3   ┆ 6   │
    └─────┴─────┘

    """
    return DataFrame._from_dicts(dicts, infer_schema_length)