Beispiel #1
0
def singleLocusSigmoid():
    x0=0.001;s=0.5;maxGen=100
    times_ = T.ivector("times"); x0_ = T.scalar("x0 ")
    S__=theano.shared(np.asarray(s, dtype = theano.config.floatX), 'S')
    pred_= sig_(0.5*S__*times_ + logit_(x0_))
    Feedforward_ = theano.function(inputs=[x0_,times_], outputs=pred_)
    pd.Series(Feedforward_(x0,range(maxGen))).plot();
    pd.Series(sig(0.5*s*np.arange(maxGen)+logit(x0))).plot()
Beispiel #2
0
def singleMultiLocusHafVariableTime():
    from popgen.TimeSeries.RNN.Utils import Z
    x0=0.001;s=0.5;maxGen=100;numReplicates=3;times=np.tile(np.arange(maxGen+1),(numReplicates,1)).T.astype(np.float32)
    initC0 = np.arange(numReplicates,dtype=np.float32)*logit(x0)
    c__=theano.shared(initC0, 'c')
#     c__=theano.shared(np.asarray(logit(x0), dtype = theano.config.floatX), 'S')
    times_ = T.fmatrix();rep_ = T.iscalar();maxGenerations_ = T.ivector()
    target_ = (T.matrix(),T.vector())[numReplicates==1]
    S__=theano.shared(np.asarray(s, dtype = np.float32), 'S')
    loss_=  (target_[:maxGenerations_[rep_],rep_] - Z(T.nnet.sigmoid(0.5*S__*times_[:maxGenerations_[rep_],rep_]  +c__[rep_]),200,20))**2
    reps_=T.ivector()
    cost_, _ = theano.scan(lambda rep: (target_[:maxGenerations_[rep],rep] - times_[:maxGenerations_[rep],rep]).sum()  , sequences=reps_); cost_=cost_.sum()
    
    Loss_ = theano.function(inputs=[target_, times_, maxGenerations_, reps_], outputs=[results])
    
    times
    target=times+1
    target[:,1]+=1
    target[:,2]+=1
    target
    lastGenerationIndex=[10,20,30]
    reps=range(numReplicates)
    Loss_(target,times,lastGenerationIndex,reps)
    target
    import popgen.TimeSeries.RNN.MultiLocusHAFOptimizingAllVarsVariableTimeOld as RNN
    
    numReplicates=3 ; s=0.02;generationStep=100
    sim = Simulation.Simulation(numReplicates=numReplicates, s=s, generationStep=generationStep);
    sim.forwardSimulation();
    sim.getAverageHAF().plot()
    sim.getAverageHAF().diff().plot()
    y=sim.getAverageHAF();times=sim.getGenerationTimes()
    replicateIndex=range(sim.numReplicates)
    reload(RNN)
    n=2000;theta=20
    lastGenerationIndex=sim.filterTimeSamplesWithHighNegDer()
    rnn=RNN.MultiLocusHAFOptimizingAllVarsVariableTimeOld(sim.X0.min(),lastGenerationIndex=lastGenerationIndex, initS=sim.s,  initTheta=theta, times=sim.getGenerationTimes(), numReplicates=sim.numReplicates,initSviaLineSearch=False)
    rnn.Loss_(y.values,np.tile(times,(3,1)).T.astype(np.float32),n,list(lastGenerationIndex),replicateIndex)
    Z(sig(0.5*times*sim.s + logit(sim.X0.min())),n,theta)
    i=10
    j=0
    for j,i in enumerate(lastGenerationIndex):
        print ((Z(sig(0.5*times*sim.s + logit(sim.X0.min())),n,theta)[:i] - y.values[:i,j])**2).sum()
    print lastGenerationIndex
Beispiel #3
0
def singleLocusSigmoidX0():
    x0=0.001;s=0.5;maxGen=100;numReplicates=3;times=np.arange(maxGen)
    initC0 = np.ones(numReplicates,dtype=np.float32)*logit(x0)
    c__=theano.shared(initC0, 'c')
#     c__=theano.shared(np.asarray(logit(x0), dtype = theano.config.floatX), 'S')
    times_ = T.fmatrix("times"); numReplicates_ = T.scalar("numReplicates ")
    S__=theano.shared(np.asarray(s, dtype = np.float32), 'S')
    pred_= T.nnet.sigmoid(0.5*S__*times_  +c__)
    Feedforward_ = theano.function(inputs=[times_], outputs=pred_)
    
    tt=np.tile(times,(3,1)).T.astype(np.float32)
    Feedforward_(tt)
Beispiel #4
0
def singleMultiLocusHaf():
    from popgen.TimeSeries.RNN.Utils import Z
    x0=0.001;s=0.5;maxGen=100;numReplicates=3;times=np.arange(maxGen)
    initC0 = np.ones(numReplicates,dtype=np.float32)*logit(x0)
    c__=theano.shared(initC0, 'c')
#     c__=theano.shared(np.asarray(logit(x0), dtype = theano.config.floatX), 'S')
    times_ = T.fmatrix("times"); numReplicates_ = T.scalar("numReplicates ")
    S__=theano.shared(np.asarray(s, dtype = np.float32), 'S')
    pred_= Z(T.nnet.sigmoid(0.5*S__*times_  +c__),200,20)
    Feedforward_ = theano.function(inputs=[times_], outputs=pred_)
    
    tt=np.tile(times,(3,1)).T.astype(np.float32)
    plt.plot(Feedforward_(tt)[:,0])
Beispiel #5
0
    def Nu0(s,t,nu0,n,theta): return Z(sig(np.array(t)*s/2 +logit(nu0)),n,theta)
     


    initNu0=0.005; final_momentum=0.9; initial_momentum=0.5;momentum_switchover=5;times=range(1,801);S=3;lr=1e-2;maxIter=10000;initS=0.05; initTheta= 20; numReplicates=3;n=2000
Beispiel #6
0
 def Nu(s,t,nu0): return np.array([sig(t*s/2 +logit(nu)) for nu in nu0]).T
 def Nu0(s,t,nu0,n,theta): return Z(sig(np.array(t)*s/2 +logit(nu0)),n,theta)