Beispiel #1
0
    def get_ret_lbl(self, stk_mask, ent, ext):
        ent_idx = self._date_to_idx(ent)
        ext_idx = self._date_to_idx(ext)
        ent_px = self.raw_data[stk_mask, ent_idx,
                               get_config().ADJ_CLOSE_DATA_IDX]
        ext_px = self.raw_data[stk_mask, ext_idx,
                               get_config().ADJ_CLOSE_DATA_IDX]
        not_tradeable_mask = ~(self.tradable_mask[stk_mask, ext_idx])
        if np.sum(not_tradeable_mask) != 0:
            stk_idxs = np.nonzero(stk_mask)[0]
            not_tradeable_stk_idxs = stk_idxs[not_tradeable_mask]
            # stks = self.tickers[stk_mask]
            # not_tradeable_stks = stks[not_tradeable_mask]
            fill_idxs = np.nonzero(not_tradeable_mask)[0]
            for i in range(not_tradeable_stk_idxs.shape[0]):
                stk_idx = not_tradeable_stk_idxs[i]
                idx_to_fill = fill_idxs[i]
                stk_tradeable_mask = self.tradable_mask[stk_idx, :]
                stk_tradeable_day_idxs = np.nonzero(stk_tradeable_mask)[0]
                _ext_idx = ent_idx
                # first tradeable day after
                after_idxs = np.nonzero(stk_tradeable_day_idxs > ext_idx)[0]
                if after_idxs.shape[0] > 0:
                    _ext_idx = stk_tradeable_day_idxs[after_idxs[0]]
                else:
                    before_idxs = np.where(stk_tradeable_day_idxs > ent_idx)[0]
                    if before_idxs.shape[0] > 0:
                        _ext_idx = stk_tradeable_day_idxs[before_idxs[0]]
                # print("%s %s %d" % (ent.strftime('%Y-%m-%d'), not_tradeable_stks[i], _ext_idx - ent_idx))
                _ext_px = self.raw_data[stk_idx, _ext_idx,
                                        get_config().ADJ_CLOSE_DATA_IDX]
                ext_px[idx_to_fill] = _ext_px

        return (ext_px - ent_px) / ent_px
Beispiel #2
0
    def __init__(self):
        self.labels = labels = tf.placeholder(tf.float32, [None], name='labels')
        self.x = x = tf.placeholder(tf.float32, [None, None, 5], name='input')
        self.phase = phase = tf.placeholder(tf.bool, name='phase')

        # keep_prob = tf.placeholder(tf.float32)

        cells = []
        with tf.name_scope('rnn'):
            idx = 0
            for num_units in get_config().LSTM_LAYERS_SIZE:
                scope_name = 'rnn_layer_%d' % idx
                with tf.name_scope(scope_name):
                    cell = tf.contrib.rnn.LayerNormBasicLSTMCell(num_units)
                    # cell = tf.contrib.rnn.LSTMCell(num_units)
                    # cell = tf.contrib.rnn.GRUCell(num_units)
                    # cell = tf.contrib.rnn.DropoutWrapper(
                    #     cell, output_keep_prob=keep_prob)
                    cells.append(cell)
                idx += 1
            cell = tf.contrib.rnn.MultiRNNCell(cells)
            # Batch size x time steps x features.
            output, state = tf.nn.dynamic_rnn(cell, x, dtype=tf.float32)

            last_idx = tf.shape(output)[1] - 1
            output = tf.transpose(output, [1, 0, 2])
            self.last = last = tf.gather(output, last_idx, name='rnn_features')

        x = last
        idx = 0
        for num_units in get_config().FC_LAYERS_SIZE:
            scope_name = 'fc_layer_%d' % idx
            with tf.name_scope(scope_name):
                self.h1 = h1 = tf.contrib.layers.fully_connected(x, num_units, activation_fn=None,
                                                                 scope='dense_%d' % idx)
                if get_config().BATCH_NORM:
                    self.h2 = h2 = tf.contrib.layers.batch_norm(h1,
                                                                center=True, scale=True,
                                                                is_training=phase,
                                                                scope='bn_%d' % idx)
                else:
                    h2 = h1
                self.h3 = x = tf.nn.tanh(h2, 'tanh_%d' % idx)
            idx += 1

        # final fc layer
        scope_name = 'fc_layer_%d' % idx
        with tf.name_scope(scope_name):
            self.h = x = tf.contrib.layers.fully_connected(x, 1, activation_fn=None, scope='dense_%d' % idx)
            x = tf.reshape(x,[-1])

        with tf.name_scope('loss'):
            self.returns = x
            diff = self.returns - labels
            self.cost = tf.reduce_mean(tf.square(diff))
            update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
            with tf.control_dependencies(update_ops):
                optimizer = tf.train.AdamOptimizer()
                self.optimizer = optimizer.minimize(self.cost)
        self.saver = tf.train.Saver(tf.global_variables(), max_to_keep=None)
Beispiel #3
0
 def get_input(self, stk_mask, end):
     end_idx = self._date_to_idx(end)
     if get_config().SKIP_NON_TRADING_DAYS:
         history = get_config().RNN_HISTORY.days
         valid_trading_day_idxs = np.nonzero(
             self.trading_day_idxs <= end_idx)[0]
         history_trading_day_idxs = self.trading_day_idxs[
             valid_trading_day_idxs[-history:]]
         x = self.x[:, history_trading_day_idxs, :]
         return x[stk_mask, :, :]
     else:
         beg = end - get_config().RNN_HISTORY
         beg_idx = self._date_to_idx(beg)
         return self.x[stk_mask, beg_idx:end_idx, :]
Beispiel #4
0
    def __init__(self):
        print('creating neural network...')
        self.labels = labels = tf.placeholder(tf.float32, [None, None],
                                              name='labels')
        self.input = input = tf.placeholder(tf.float32, [None, None, 6],
                                            name='input')

        cells = []
        with tf.name_scope('rnn'):
            idx = 0
            for num_units in get_config().LSTM_LAYERS_SIZE:
                scope_name = 'rnn_layer_%d' % idx
                with tf.name_scope(scope_name):
                    rnn_cell = tf.contrib.rnn.LayerNormBasicLSTMCell(num_units)
                    cells.append(rnn_cell)
                idx += 1
            self.rnn_cell = rnn_cell = tf.contrib.rnn.MultiRNNCell(cells)

            state = ()
            for s in rnn_cell.state_size:
                c = tf.placeholder(tf.float32, [None, s.c])
                h = tf.placeholder(tf.float32, [None, s.h])
                state += (tf.contrib.rnn.LSTMStateTuple(c, h), )
            self.state = state

            # Batch size x time steps x features.
            output, new_state = tf.nn.dynamic_rnn(rnn_cell,
                                                  input,
                                                  initial_state=state)
            self.new_state = new_state

        # final fc layer
        with tf.name_scope('fc_layer'):
            self.returns = tf.contrib.layers.fully_connected(
                output, 1, activation_fn=None, scope='dense_%d' % idx)

        with tf.name_scope('loss'):
            diff = self.returns - tf.expand_dims(labels, 2)
            self.cost = tf.reduce_mean(tf.square(diff))
            self.optimizer = tf.train.AdamOptimizer().minimize(self.cost)

        self.sess = tf.Session()
        self.saver = tf.train.Saver(tf.global_variables(), max_to_keep=None)
Beispiel #5
0
    def __init__(self):
        print('loading data...')
        self._tickers, self.raw_dt, self.raw_data = load_npz_data(
            'data/snp/snp_px.npz')
        print('data load complete')

        # calc data dimensions
        self.stks = self.raw_data.shape[0]
        self.days = self.raw_data.shape[1]

        # calc data dates range
        self.HIST_BEG = self._idx_to_date(0)
        self.HIST_END = self._idx_to_date(-1)

        # calc tradable_mask, traded_stocks_per_day, trading_day_mask
        self.tradable_mask = np.all(self.raw_data > 0.0, axis=2)
        self.traded_stocks_per_day = self.tradable_mask[:, :].sum(0)
        self.trading_day_mask = self.traded_stocks_per_day > get_config(
        ).MIN_STOCKS_TRADABLE_PER_TRADING_DAY
        self.trading_day_idxs = np.nonzero(self.trading_day_mask)[0]

        # calc snp_mask
        self.snp_mask = np.full((self.stks, self.days), False)

        snp_mask_df = pd.read_csv('data/snp/snp_mask.csv')

        for idx, row in snp_mask_df.iterrows():
            _from = datetime.datetime.strptime(row['from'], '%Y-%m-%d').date()
            _to = datetime.datetime.strptime(row['to'], '%Y-%m-%d').date()
            _ticker = row['ticker']
            stk_idx = self._ticker_to_idx(_ticker)
            if stk_idx is None:
                continue
            _from = max(_from, self.HIST_BEG)
            _to = min(_to, self.HIST_END)
            _from_idx = self._date_to_idx(_from)
            _to_idx = self._date_to_idx(_to)

            self.snp_mask[stk_idx, _from_idx:_to_idx + 1] = True

        # prepare input array
        x = np.zeros((self.stks, self.days, 5))
        # fill array for each stock
        for stk_idx in range(self.stks):
            stk_raw_data = self.raw_data[stk_idx, :, :]
            tradable_mask = self.tradable_mask[stk_idx]

            # #there are some errors in data when let's say we have volume but no prices, or when one px is zero
            # #threat such days as not tradable to minimize errors - looks like we really can skip such days
            # vol_tradable_mask = stk_raw_data[:, get_config().VOLUME_DATA_IDX] > 0.0
            # xor = tradable_mask != vol_tradable_mask
            # missmatches = np.sum(xor)
            # if missmatches > 0:
            #     dt_idx = np.where(xor)[0]
            #     print(self.tickers[stk_idx])
            #     for idx in range(dt_idx.shape[0]):
            #         date = datetime.datetime.fromtimestamp(self.raw_dt[dt_idx[idx]]).date()
            #         print(date)

            stk_data = stk_raw_data[tradable_mask, :]
            a_o = stk_data[:, get_config().ADJ_OPEN_DATA_IDX]
            a_c = stk_data[:, get_config().ADJ_CLOSE_DATA_IDX]
            a_h = stk_data[:, get_config().ADJ_HIGH_DATA_IDX]
            a_l = stk_data[:, get_config().ADJ_LOW_DATA_IDX]
            a_v = stk_data[:, get_config().ADJ_VOLUME_DATA_IDX]

            if a_c.shape[0] == 0:
                # print(self._idx_to_ticker(stk_idx))
                continue

            prev_a_c = np.roll(a_c, 1)
            prev_a_c[0] = a_c[0]
            prev_a_v = np.roll(a_v, 1)
            prev_a_v[0] = a_v[0]

            # other variant is to use ln(a_c / prev_a_c) - they are almost identical
            # plus we can scale input by multiplier (100%)
            x_o = np.log(a_o / prev_a_c) if get_config().LOG_RET else (
                a_o - prev_a_c) / prev_a_c
            x_c = np.log(a_c / prev_a_c) if get_config().LOG_RET else (
                a_c - prev_a_c) / prev_a_c
            x_h = np.log(a_h / prev_a_c) if get_config().LOG_RET else (
                a_h - prev_a_c) / prev_a_c
            x_l = np.log(a_l / prev_a_c) if get_config().LOG_RET else (
                a_l - prev_a_c) / prev_a_c
            x_v = np.log(a_v / prev_a_v) if get_config().LOG_VOL_CHG else (
                a_v - prev_a_v) / prev_a_v

            x[stk_idx, tradable_mask, 0] = get_config().RET_MUL * x_o
            x[stk_idx, tradable_mask, 1] = get_config().RET_MUL * x_c
            x[stk_idx, tradable_mask, 2] = get_config().RET_MUL * x_h
            x[stk_idx, tradable_mask, 3] = get_config().RET_MUL * x_l
            x[stk_idx, tradable_mask, 4] = get_config().VOL_CHG_MUL * x_v
        self.x = x
Beispiel #6
0
def train():
    snp_env = SnpEnv()
    if get_config().NET_VER == NetVersion.APPLE:
        net = NetApple()
    elif get_config().NET_VER == NetVersion.BANANA:
        net = NetBanana()
    elif get_config().NET_VER == NetVersion.WORM:
        net = NetWorm()
    elif get_config().NET_VER == NetVersion.SNAKE:
        net = NetSnake()
    elif get_config().NET_VER == NetVersion.ANTI_SNAKE:
        net = NetAntiSnake()
    elif get_config().NET_VER == NetVersion.CAT:
        net = NetCat()
    elif get_config().NET_VER == NetVersion.COW:
        net = NetCow()
    net.init()
    train_trading_schedule = []
    test_trading_schedule = []
    for ent, ext in snp_env.trading_schedule_generator(
            get_config().TRAIN_BEG,
            get_config().TRAIN_END,
            get_config().TRADING_PERIOD_DAYS):
        train_trading_schedule.append((ent, ext))
    for ent, ext in snp_env.trading_schedule_generator(
            get_config().TEST_BEG,
            get_config().TEST_END,
            get_config().TRADING_PERIOD_DAYS):
        test_trading_schedule.append((ent, ext))

    if not os.path.exists(get_config().TRAIN_STAT_PATH):
        with open(get_config().TRAIN_STAT_PATH, 'a', newline='') as f:
            writer = csv.writer(f)
            writer.writerow(
                ('epoch', 'train dd', 'train y avg', 'train sharpe', 'test dd',
                 'test y avg', 'test sharpe'))

    with open(get_config().TRAIN_STAT_PATH, 'a', newline='') as f:
        writer = csv.writer(f)
        if get_config().EPOCH_WEIGHTS_TO_LOAD != 0:
            net.load_weights(get_config().WEIGHTS_PATH,
                             get_config().EPOCH_WEIGHTS_TO_LOAD)
            epoch = get_config().EPOCH_WEIGHTS_TO_LOAD
            if get_config().MODE == Mode.TRAIN:
                epoch += 1
        else:
            epoch = 0
        while True:
            print("Epoch %d" % epoch)

            # train
            if get_config().MODE == Mode.TRAIN:
                print("Training...")
                if get_config().SHUFFLE:
                    train_schedule = random.sample(train_trading_schedule,
                                                   len(train_trading_schedule))
                else:
                    train_schedule = train_trading_schedule
                dataset_size = len(train_schedule)
                curr_progress = 0
                passed = 0
                for ent, ext in train_schedule:
                    stk_mask = snp_env.get_tradeable_snp_components_mask(ent)
                    # print("%d %s %s" % (np.sum(stk_mask), ent.strftime("%Y-%m-%d"), ext.strftime("%Y-%m-%d")))
                    x = snp_env.get_input(stk_mask, ent)
                    labels = snp_env.get_ret_lbl(stk_mask, ent, ext)
                    if get_config().NET_VER == NetVersion.COW:
                        variances = calc_variance(x)
                    if get_config().NET_VER == NetVersion.COW:
                        net.fit(x, labels, variances)
                    else:
                        net.fit(x, labels)
                    if passed == 0:
                        if get_config().NET_VER == NetVersion.COW:
                            pl, weights = net.eval(x, labels, variances)
                        else:
                            pl, weights = net.eval(x, labels)
                        print(pl)
                    curr_progress = progress.print_progress(
                        curr_progress, passed, dataset_size)
                    passed += 1
                progress.print_progess_end()

            # eval train
            print("Eval train...")
            ret = np.zeros((len(train_trading_schedule)))

            dataset_size = len(train_trading_schedule)
            curr_progress = 0
            passed = 0
            dt = []
            for ent, ext in train_trading_schedule:
                if ext is None:
                    break
                if len(dt) == 0:
                    dt.append(ent)
                dt.append(ext)
                stk_mask = snp_env.get_tradeable_snp_components_mask(ent)
                x = snp_env.get_input(stk_mask, ent)
                labels = snp_env.get_ret_lbl(stk_mask, ent, ext)

                if get_config().NET_VER == NetVersion.COW:
                    variances = calc_variance(x)
                    pl, weights = net.eval(x, labels, variances)
                else:
                    pl, weights = net.eval(x, labels)

                if get_config().NET_VER == NetVersion.APPLE:
                    # # net
                    # long_mask = weights >= 0.0
                    # short_mask = weights <= 0.0
                    #
                    # int_date = snp_env.find_trading_date(ent + datetime.timedelta(days=1))
                    # int_r = snp_env.get_ret_lbl(stk_mask, ent, int_date)
                    # port_ret = labels - int_r
                    # # sorted_int_r_idxs = np.argsort(int_r)
                    # long_idxs = np.nonzero(long_mask)[0]
                    # long_int_r = int_r[long_idxs]
                    # sorted_long_int_r_idxs = np.argsort(long_int_r)
                    # long_sel_idxs = long_idxs[sorted_long_int_r_idxs[:get_config().SELECTTION]]
                    #
                    # short_idxs = np.nonzero(short_mask)[0]
                    # short_int_r = int_r[short_idxs]
                    # sorted_short_int_r_idxs = np.argsort(short_int_r)
                    # short_sel_idxs = short_idxs[sorted_short_int_r_idxs[-get_config().SELECTTION:]]
                    #
                    # long_pl = np.mean(port_ret[long_sel_idxs])
                    # short_pl = np.mean(port_ret[short_sel_idxs])

                    # # no net
                    # int_date = snp_env.find_trading_date(ent + datetime.timedelta(days=1))
                    # int_r = snp_env.get_ret_lbl(stk_mask, ent, int_date)
                    # port_ret = labels - int_r
                    # sorted_int_r_idxs = np.argsort(int_r)
                    # long_pl = np.mean(port_ret[sorted_int_r_idxs[:get_config().SELECTTION]])
                    # short_pl = np.mean(port_ret[sorted_int_r_idxs[-get_config().SELECTTION:]])

                    # 1d no net
                    prev_date = snp_env.find_prev_trading_date(
                        ent - datetime.timedelta(days=1))
                    int_stk_mask = snp_env.get_tradeable_snp_components_mask(
                        prev_date)
                    stk_mask &= int_stk_mask

                    int_r = snp_env.get_ret_lbl(stk_mask, prev_date, ent)
                    port_ret = snp_env.get_ret_lbl(stk_mask, ent, ext)
                    sorted_int_r_idxs = np.argsort(int_r)
                    long_pl = np.mean(
                        port_ret[sorted_int_r_idxs[:get_config().SELECTTION]])
                    short_pl = np.mean(
                        port_ret[sorted_int_r_idxs[-get_config().SELECTTION:]])

                    # real_ext = snp_env.find_trading_date(ext + datetime.timedelta(days=1))
                    # if real_ext is None:
                    #     real_ext = ext
                    # int_r = labels
                    # port_ret = snp_env.get_ret_lbl(stk_mask, ext, real_ext)
                    # sorted_int_r_idxs = np.argsort(int_r)
                    # long_pl = np.mean(port_ret[sorted_int_r_idxs[:get_config().SELECTTION]])
                    # short_pl = np.mean(port_ret[sorted_int_r_idxs[-get_config().SELECTTION:]])

                    pl = 0.7 * long_pl - 0.3 * short_pl

                # if get_config().NET_VER == NetVersion.SNAKE or get_config().NET_VER == NetVersion.ANTI_SNAKE:
                #     sorted_weights_idxs = np.argsort(weights)
                #     selected_weights_idxs = sorted_weights_idxs[-get_config().SELECTTION:]
                #     pl = np.mean(labels[selected_weights_idxs])
                #     if get_config().NET_VER == NetVersion.ANTI_SNAKE:
                #         pl = -pl

                if get_config().PRINT_PREDICTION:
                    print_alloc(pl, ent, snp_env.tickers, stk_mask, weights)
                if abs(pl) >= 0.3:
                    pl = 0
                ret[passed] = pl
                curr_progress = progress.print_progress(
                    curr_progress, passed, dataset_size)
                passed += 1
            progress.print_progess_end()

            # print("Train loss: %.4f" % (np.mean(np.sqrt(ret)) * 100))
            years = (get_config().TRAIN_END -
                     get_config().TRAIN_BEG).days / 365
            capital = get_capital(ret, False)
            train_dd = get_draw_down(capital, False)
            train_sharpe = get_sharpe_ratio(ret, years)
            train_y_avg = get_avg_yeat_ret(ret, years)
            print('Train dd: %.2f%% y_avg: %.2f%% sharpe: %.2f' %
                  (train_dd * 100, train_y_avg * 100, train_sharpe))
            if get_config().MODE == Mode.TEST:
                plot_equity_curve("Train equity curve", dt, capital)
                df = pd.DataFrame({'date': dt, 'capital': capital})
                df.to_csv('data/tr_eq.csv', index=False)

            # eval test
            print("Eval test...")
            ret = np.zeros((len(test_trading_schedule)))

            dataset_size = len(test_trading_schedule)
            curr_progress = 0
            passed = 0
            dt = []
            for ent, ext in test_trading_schedule:
                if ext.month == 3 and ext.day == 11 and ext.year == 2015:
                    _debug = 0
                if ext is None:
                    break
                if len(dt) == 0:
                    dt.append(ent)
                dt.append(ext)
                stk_mask = snp_env.get_tradeable_snp_components_mask(ent)
                x = snp_env.get_input(stk_mask, ent)
                labels = snp_env.get_ret_lbl(stk_mask, ent, ext)
                if get_config().NET_VER == NetVersion.COW:
                    variances = calc_variance(x)
                    pl, weights = net.eval(x, labels, variances)
                else:
                    pl, weights = net.eval(x, labels)

                if get_config().NET_VER == NetVersion.APPLE:
                    # # net
                    # long_mask = weights >= 0.0
                    # short_mask = weights <= 0.0
                    #
                    # int_date = snp_env.find_trading_date(ent + datetime.timedelta(days=1))
                    # int_r = snp_env.get_ret_lbl(stk_mask, ent, int_date)
                    # port_ret = labels - int_r
                    # # sorted_int_r_idxs = np.argsort(int_r)
                    # long_idxs = np.nonzero(long_mask)[0]
                    # long_int_r = int_r[long_idxs]
                    # sorted_long_int_r_idxs = np.argsort(long_int_r)
                    # long_sel_idxs = long_idxs[sorted_long_int_r_idxs[:get_config().SELECTTION]]
                    #
                    # short_idxs = np.nonzero(short_mask)[0]
                    # short_int_r = int_r[short_idxs]
                    # sorted_short_int_r_idxs = np.argsort(short_int_r)
                    # short_sel_idxs =  short_idxs[sorted_short_int_r_idxs[-get_config().SELECTTION:]]
                    #
                    # long_pl = np.mean(port_ret[long_sel_idxs])
                    # short_pl = np.mean(port_ret[short_sel_idxs])

                    # # no net
                    # int_date = snp_env.find_trading_date(ent + datetime.timedelta(days=1))
                    # int_r = snp_env.get_ret_lbl(stk_mask, ent, int_date)
                    # port_ret = labels - int_r
                    # sorted_int_r_idxs = np.argsort(int_r)
                    # long_pl = np.mean(port_ret[sorted_int_r_idxs[:get_config().SELECTTION]])
                    # short_pl = np.mean(port_ret[sorted_int_r_idxs[-get_config().SELECTTION:]])

                    # 1d no net
                    prev_date = snp_env.find_prev_trading_date(
                        ent - datetime.timedelta(days=1))
                    int_stk_mask = snp_env.get_tradeable_snp_components_mask(
                        prev_date)
                    stk_mask &= int_stk_mask

                    int_r = snp_env.get_ret_lbl(stk_mask, prev_date, ent)
                    port_ret = snp_env.get_ret_lbl(stk_mask, ent, ext)
                    sorted_int_r_idxs = np.argsort(int_r)
                    long_pl = np.mean(
                        port_ret[sorted_int_r_idxs[:get_config().SELECTTION]])
                    short_pl = np.mean(
                        port_ret[sorted_int_r_idxs[-get_config().SELECTTION:]])

                    pl = 0.7 * long_pl - 0.3 * short_pl

                # if get_config().NET_VER == NetVersion.SNAKE or get_config().NET_VER == NetVersion.ANTI_SNAKE:
                #     sorted_weights_idxs = np.argsort(weights)
                #     selected_weights_idxs = sorted_weights_idxs[-get_config().SELECTTION:]
                #     pl = np.mean(labels[selected_weights_idxs])
                #     if get_config().NET_VER == NetVersion.ANTI_SNAKE:
                #         pl = -pl

                if get_config().PRINT_PREDICTION:
                    print_alloc(pl, ent, snp_env.tickers, stk_mask, weights)
                if abs(pl) >= 0.3:
                    pl = 0
                ret[passed] = pl
                curr_progress = progress.print_progress(
                    curr_progress, passed, dataset_size)
                passed += 1
            progress.print_progess_end()

            # print("Test loss: %.4f" % (np.mean(np.sqrt(ret)) * 100))

            years = (get_config().TRAIN_END -
                     get_config().TRAIN_BEG).days / 365
            capital = get_capital(ret, False)
            test_dd = get_draw_down(capital, False)
            test_sharpe = get_sharpe_ratio(ret, years)
            test_y_avg = get_avg_yeat_ret(ret, years)
            print('Test dd: %.2f%% y_avg: %.2f%% sharpe: %.2f' %
                  (test_dd * 100, test_y_avg * 100, test_sharpe))

            if get_config().MODE == Mode.TEST:
                plot_equity_curve("Test equity curve", dt, capital)
                df = pd.DataFrame({'date': dt, 'capital': capital})
                df.to_csv('data/tst_eq.csv', index=False)

            if get_config().MODE == Mode.TRAIN:
                net.save_weights(get_config().WEIGHTS_PATH, epoch)
                writer.writerow((epoch, train_dd, train_y_avg, train_sharpe,
                                 test_dd, test_y_avg, test_sharpe))
                epoch += 1
                f.flush()
            else:
                show_plots()
                break
Beispiel #7
0
def calc_variance(x):
    return np.maximum(np.var(x[:, :, 1], axis=1), get_config().MIN_VARIANCE)
Beispiel #8
0
def preprocess_snp_px():
    tickers = get_snp_hitorical_components_tickers()
    preprocess_data(tickers, 'data/snp/snp_px.csv', get_config().HIST_BEG, get_config().HIST_END, 'data/snp/snp_px.npz',
                    get_config().DATA_FEATURES)
Beispiel #9
0
def download_snp_px():
    tickers = get_snp_hitorical_components_tickers()
    download_data(tickers, 'data/snp/snp_px.csv', get_config().HIST_BEG, get_config().HIST_END, )