Beispiel #1
0
        def get(text):
            question_examples = [SquadExample(qas_id='serve', question_text=text)]
            query_eval_features = convert_questions_to_features(
                examples=question_examples,
                tokenizer=tokenizer,
                max_query_length=16)
            question_dataloader = convert_question_features_to_dataloader(query_eval_features, args.fp16,
                                                                          args.local_rank,
                                                                          args.predict_batch_size)

            model.eval()

            question_results = get_question_results_(question_examples, query_eval_features, question_dataloader,
                                                     device, model)
            question_result = next(iter(question_results))
            out = question_result.start.tolist(), question_result.end.tolist(), question_result.span_logit.tolist()
            return out
Beispiel #2
0
def main():
    parser = argparse.ArgumentParser()

    ## Required parameters
    parser.add_argument('--mode', type=str, default='train')
    parser.add_argument('--pause', type=int, default=0)
    parser.add_argument('--iteration', type=str, default='1')
    parser.add_argument('--fs', type=str, default='local',
                        help='must be `local`. Do not change.')

    # Data paths
    parser.add_argument('--data_dir', default='data/', type=str)
    parser.add_argument("--train_file", default='train-v1.1.json', type=str,
                        help="SQuAD json for training. E.g., train-v1.1.json")
    parser.add_argument("--predict_file", default='dev-v1.1.json', type=str,
                        help="SQuAD json for predictions. E.g., dev-v1.1.json or test-v1.1.json")
    parser.add_argument('--gt_file', default='dev-v1.1.json', type=str, help='ground truth file needed for evaluation.')

    # Metadata paths
    parser.add_argument('--metadata_dir', default='metadata/', type=str)
    parser.add_argument("--vocab_file", default='vocab.txt', type=str,
                        help="The vocabulary file that the BERT model was trained on.")
    parser.add_argument("--bert_model_option", default='large_uncased', type=str,
                        help="model architecture option. [large_uncased] or [base_uncased]")
    parser.add_argument("--bert_config_file", default='bert_config.json', type=str,
                        help="The config json file corresponding to the pre-trained BERT model. "
                             "This specifies the model architecture.")
    parser.add_argument("--init_checkpoint", default='pytorch_model.bin', type=str,
                        help="Initial checkpoint (usually from a pre-trained BERT model).")

    # Output and load paths
    parser.add_argument("--output_dir", default='out/', type=str,
                        help="The output directory where the model checkpoints will be written.")
    parser.add_argument("--index_file", default='index.hdf5', type=str, help="index output file.")
    parser.add_argument("--question_emb_file", default='question.hdf5', type=str, help="question output file.")

    parser.add_argument('--load_dir', default='out/', type=str)

    # Local paths (if we want to run cmd)
    parser.add_argument('--eval_script', default='evaluate-v1.1.py', type=str)

    # Do's
    parser.add_argument("--do_load", default=False, action='store_true', help='Do load. If eval, do load automatically')
    parser.add_argument("--do_train", default=False, action='store_true', help="Whether to run training.")
    parser.add_argument("--do_train_filter", default=False, action='store_true', help='Train filter or not.')
    parser.add_argument("--do_train_sparse", default=False, action='store_true', help='Train sparse or not.')
    parser.add_argument("--do_predict", default=False, action='store_true', help="Whether to run eval on the dev set.")
    parser.add_argument('--do_eval', default=False, action='store_true')
    parser.add_argument('--do_embed_question', default=False, action='store_true')
    parser.add_argument('--do_index', default=False, action='store_true')
    parser.add_argument('--do_serve', default=False, action='store_true')

    # Model options: if you change these, you need to train again
    parser.add_argument("--do_case", default=False, action='store_true',
                        help="Whether to lower case the input text. Should be True for uncased "
                             "models and False for cased models.")
    parser.add_argument('--phrase_size', default=961, type=int)
    parser.add_argument('--metric', default='ip', type=str, help='ip | l2')
    parser.add_argument("--use_sparse", default=False, action='store_true')

    # GPU and memory related options
    parser.add_argument("--max_seq_length", default=384, type=int,
                        help="The maximum total input sequence length after WordPiece tokenization. Sequences "
                             "longer than this will be truncated, and sequences shorter than this will be padded.")
    parser.add_argument("--doc_stride", default=128, type=int,
                        help="When splitting up a long document into chunks, how much stride to take between chunks.")
    parser.add_argument("--max_query_length", default=64, type=int,
                        help="The maximum number of tokens for the question. Questions longer than this will "
                             "be truncated to this length.")
    parser.add_argument("--train_batch_size", default=12, type=int, help="Total batch size for training.")
    parser.add_argument("--predict_batch_size", default=16, type=int, help="Total batch size for predictions.")
    parser.add_argument('--gradient_accumulation_steps',
                        type=int,
                        default=1,
                        help="Number of updates steps to accumulate before performing a backward/update pass.")
    parser.add_argument('--optimize_on_cpu',
                        default=False,
                        action='store_true',
                        help="Whether to perform optimization and keep the optimizer averages on CPU")
    parser.add_argument("--no_cuda",
                        default=False,
                        action='store_true',
                        help="Whether not to use CUDA when available")
    parser.add_argument("--local_rank",
                        type=int,
                        default=-1,
                        help="local_rank for distributed training on gpus")
    parser.add_argument('--fp16',
                        default=False,
                        action='store_true',
                        help="Whether to use 16-bit float precision instead of 32-bit")

    # Training options: only effective during training
    parser.add_argument("--learning_rate", default=3e-5, type=float, help="The initial learning rate for Adam.")
    parser.add_argument("--num_train_epochs", default=3.0, type=float,
                        help="Total number of training epochs to perform.")
    parser.add_argument("--num_train_filter_epochs", default=1.0, type=float,
                        help="Total number of training epochs for filter to perform.")
    parser.add_argument("--num_train_sparse_epochs", default=3.0, type=float,
                        help="Total number of training epochs for sparse to perform.")
    parser.add_argument("--warmup_proportion", default=0.1, type=float,
                        help="Proportion of training to perform linear learning rate warmup for. E.g., 0.1 = 10% "
                             "of training.")
    parser.add_argument("--save_checkpoints_steps", default=1000, type=int,
                        help="How often to save the model checkpoint.")
    parser.add_argument("--iterations_per_loop", default=1000, type=int,
                        help="How many steps to make in each estimator call.")

    # Prediction options: only effective during prediction
    parser.add_argument("--n_best_size", default=20, type=int,
                        help="The total number of n-best predictions to generate in the nbest_predictions.json "
                             "output file.")
    parser.add_argument("--max_answer_length", default=30, type=int,
                        help="The maximum length of an answer that can be generated. This is needed because the start "
                             "and end predictions are not conditioned on one another.")

    # Index Options
    parser.add_argument('--dtype', default='float32', type=str)
    parser.add_argument('--filter_threshold', default=-1e9, type=float)
    parser.add_argument('--compression_offset', default=-2, type=float)
    parser.add_argument('--compression_scale', default=20, type=float)
    parser.add_argument('--split_by_para', default=False, action='store_true')

    # Serve Options
    parser.add_argument('--port', default=9009, type=int)

    # Others
    parser.add_argument('--parallel', default=False, action='store_true')
    parser.add_argument("--verbose_logging", default=False, action='store_true',
                        help="If true, all of the warnings related to data processing will be printed. "
                             "A number of warnings are expected for a normal SQuAD evaluation.")
    parser.add_argument('--seed',
                        type=int,
                        default=42,
                        help="random seed for initialization")
    parser.add_argument('--draft', default=False, action='store_true')
    parser.add_argument('--draft_num_examples', type=int, default=12)

    args = parser.parse_args()

    # Filesystem routines
    if args.fs == 'local':
        class Processor(object):
            def __init__(self, path):
                self._save = None
                self._load = None
                self._path = path

            def bind(self, save, load):
                self._save = save
                self._load = load

            def save(self, checkpoint=None, save_fn=None, **kwargs):
                path = os.path.join(self._path, str(checkpoint))
                if save_fn is None:
                    self._save(path, **kwargs)
                else:
                    save_fn(path, **kwargs)

            def load(self, checkpoint, load_fn=None, session=None, **kwargs):
                assert self._path == session
                path = os.path.join(self._path, str(checkpoint), 'model.pt')
                if load_fn is None:
                    self._load(path, **kwargs)
                else:
                    load_fn(path, **kwargs)

        processor = Processor(args.load_dir)
    else:
        raise ValueError(args.fs)

    if not args.do_train:
        args.do_load = True

    # Configure paths
    args.train_file = os.path.join(args.data_dir, args.train_file)
    args.predict_file = os.path.join(args.data_dir, args.predict_file)
    args.gt_file = os.path.join(args.data_dir, args.gt_file)

    args.bert_config_file = os.path.join(args.metadata_dir, args.bert_config_file.replace(".json", "") +
                                         "_" + args.bert_model_option + ".json")
    args.init_checkpoint = os.path.join(args.metadata_dir, args.init_checkpoint.replace(".bin", "") +
                                        "_" + args.bert_model_option + ".bin")
    args.vocab_file = os.path.join(args.metadata_dir, args.vocab_file)
    args.index_file = os.path.join(args.output_dir, args.index_file)

    # Multi-GPU stuff
    if args.local_rank == -1 or args.no_cuda:
        device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
        n_gpu = torch.cuda.device_count()
    else:
        device = torch.device("cuda", args.local_rank)
        n_gpu = 1
        # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
        torch.distributed.init_process_group(backend='nccl')
    logger.info("device %s n_gpu %d distributed training %r", device, n_gpu, bool(args.local_rank != -1))

    if args.gradient_accumulation_steps < 1:
        raise ValueError("Invalid gradient_accumulation_steps parameter: {}, should be >= 1".format(
            args.gradient_accumulation_steps))

    args.train_batch_size = int(args.train_batch_size / args.gradient_accumulation_steps)

    # Seed for reproducibility
    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    if n_gpu > 0:
        torch.cuda.manual_seed_all(args.seed)

    bert_config = BertConfig.from_json_file(args.bert_config_file)

    if args.max_seq_length > bert_config.max_position_embeddings:
        raise ValueError(
            "Cannot use sequence length %d because the BERT model "
            "was only trained up to sequence length %d" %
            (args.max_seq_length, bert_config.max_position_embeddings))

    if os.path.exists(args.output_dir) and os.listdir(args.output_dir):
        # raise ValueError("Output directory () already exists and is not empty.")
        pass
    else:
        os.makedirs(args.output_dir, exist_ok=True)

    tokenizer = tokenization.FullTokenizer(vocab_file=args.vocab_file, do_lower_case=not args.do_case)

    model = BertPhraseModel(
        bert_config,
        phrase_size=args.phrase_size,
        metric=args.metric,
        use_sparse=args.use_sparse
    )

    print('Number of model parameters:', sum(p.numel() for p in model.parameters()))

    if not args.do_load and args.init_checkpoint is not None:
        state_dict = torch.load(args.init_checkpoint, map_location='cpu')
        # If below: for Korean BERT compatibility
        if next(iter(state_dict)).startswith('bert.'):
            state_dict = {key[len('bert.'):]: val for key, val in state_dict.items()}
            state_dict = {key: val for key, val in state_dict.items() if key in model.encoder.bert_model.state_dict()}
        model.encoder.bert.load_state_dict(state_dict)

    if args.fp16:
        model.half()

    if not args.optimize_on_cpu:
        model.to(device)

    if args.local_rank != -1:
        model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.local_rank],
                                                          output_device=args.local_rank)
    elif args.parallel or n_gpu > 1:
        model = torch.nn.DataParallel(model)

    if args.do_load:
        bind_model(processor, model)
        processor.load(args.iteration, session=args.load_dir)

    if args.do_train:
        train_examples = read_squad_examples(
            input_file=args.train_file, is_training=True, draft=args.draft, draft_num_examples=args.draft_num_examples)
        num_train_steps = int(
            len(train_examples) / args.train_batch_size / args.gradient_accumulation_steps * args.num_train_epochs)

        no_decay = ['bias', 'gamma', 'beta']
        optimizer_parameters = [
            {'params': [p for n, p in model.named_parameters() if n not in no_decay], 'weight_decay_rate': 0.01},
            {'params': [p for n, p in model.named_parameters() if n in no_decay], 'weight_decay_rate': 0.0}
        ]
        optimizer = BERTAdam(optimizer_parameters,
                             lr=args.learning_rate,
                             warmup=args.warmup_proportion,
                             t_total=num_train_steps)

        bind_model(processor, model, optimizer)

        global_step = 0
        train_features, train_features_ = convert_examples_to_features(
            examples=train_examples,
            tokenizer=tokenizer,
            max_seq_length=args.max_seq_length,
            doc_stride=args.doc_stride,
            max_query_length=args.max_query_length,
            is_training=True)

        train_features = inject_noise_to_features_list(train_features,
                                                       clamp=True,
                                                       replace=True,
                                                       shuffle=True)

        logger.info("***** Running training *****")
        logger.info("  Num orig examples = %d", len(train_examples))
        logger.info("  Num split examples = %d", len(train_features))
        logger.info("  Batch size = %d", args.train_batch_size)
        logger.info("  Num steps = %d", num_train_steps)

        all_input_ids = torch.tensor([f.input_ids for f in train_features], dtype=torch.long)
        all_input_mask = torch.tensor([f.input_mask for f in train_features], dtype=torch.long)
        all_start_positions = torch.tensor([f.start_position for f in train_features], dtype=torch.long)
        all_end_positions = torch.tensor([f.end_position for f in train_features], dtype=torch.long)

        all_input_ids_ = torch.tensor([f.input_ids for f in train_features_], dtype=torch.long)
        all_input_mask_ = torch.tensor([f.input_mask for f in train_features_], dtype=torch.long)

        if args.fp16:
            (all_input_ids, all_input_mask,
             all_start_positions,
             all_end_positions) = tuple(t.half() for t in (all_input_ids, all_input_mask,
                                                           all_start_positions, all_end_positions))
            all_input_ids_, all_input_mask_ = tuple(t.half() for t in (all_input_ids_, all_input_mask_))

        train_data = TensorDataset(all_input_ids, all_input_mask,
                                   all_input_ids_, all_input_mask_,
                                   all_start_positions, all_end_positions)
        if args.local_rank == -1:
            train_sampler = RandomSampler(train_data)
        else:
            train_sampler = DistributedSampler(train_data)
        train_dataloader = DataLoader(train_data, sampler=train_sampler, batch_size=args.train_batch_size)

        model.train()
        for epoch in range(int(args.num_train_epochs)):
            for step, batch in enumerate(tqdm(train_dataloader, desc="Epoch %d" % (epoch + 1))):
                batch = tuple(t.to(device) for t in batch)
                (input_ids, input_mask,
                 input_ids_, input_mask_,
                 start_positions, end_positions) = batch
                loss, _ = model(input_ids, input_mask,
                                input_ids_, input_mask_,
                                start_positions, end_positions)
                if n_gpu > 1:
                    loss = loss.mean()  # mean() to average on multi-gpu.
                if args.gradient_accumulation_steps > 1:
                    loss = loss / args.gradient_accumulation_steps
                loss.backward()
                if (step + 1) % args.gradient_accumulation_steps == 0:
                    if args.optimize_on_cpu:
                        model.to('cpu')
                    optimizer.step()  # We have accumulated enought gradients
                    model.zero_grad()
                    if args.optimize_on_cpu:
                        model.to(device)
                    global_step += 1

            processor.save(epoch + 1)

    if args.do_train_filter:
        train_examples = read_squad_examples(
            input_file=args.train_file, is_training=True, draft=args.draft, draft_num_examples=args.draft_num_examples)
        num_train_steps = int(
            len(
                train_examples) / args.train_batch_size / args.gradient_accumulation_steps * args.num_train_filter_epochs)

        if args.parallel or n_gpu > 1:
            optimizer = Adam(model.module.filter.parameters())
        else:
            optimizer = Adam(model.filter.parameters())

        bind_model(processor, model, optimizer)

        global_step = 0
        train_features, train_features_ = convert_examples_to_features(
            examples=train_examples,
            tokenizer=tokenizer,
            max_seq_length=args.max_seq_length,
            doc_stride=args.doc_stride,
            max_query_length=args.max_query_length,
            is_training=True)
        logger.info("***** Running filter training *****")
        logger.info("  Num orig examples = %d", len(train_examples))
        logger.info("  Num split examples = %d", len(train_features))
        logger.info("  Batch size = %d", args.train_batch_size)
        logger.info("  Num steps = %d", num_train_steps)

        all_input_ids = torch.tensor([f.input_ids for f in train_features], dtype=torch.long)
        all_input_mask = torch.tensor([f.input_mask for f in train_features], dtype=torch.long)
        all_start_positions = torch.tensor([f.start_position for f in train_features], dtype=torch.long)
        all_end_positions = torch.tensor([f.end_position for f in train_features], dtype=torch.long)

        all_input_ids_ = torch.tensor([f.input_ids for f in train_features_], dtype=torch.long)
        all_input_mask_ = torch.tensor([f.input_mask for f in train_features_], dtype=torch.long)

        if args.fp16:
            (all_input_ids, all_input_mask,
             all_start_positions,
             all_end_positions) = tuple(t.half() for t in (all_input_ids, all_input_mask,
                                                           all_start_positions, all_end_positions))
            all_input_ids_, all_input_mask_ = tuple(t.half() for t in (all_input_ids_, all_input_mask_))

        train_data = TensorDataset(all_input_ids, all_input_mask,
                                   all_input_ids_, all_input_mask_,
                                   all_start_positions, all_end_positions)
        if args.local_rank == -1:
            train_sampler = RandomSampler(train_data)
        else:
            train_sampler = DistributedSampler(train_data)
        train_dataloader = DataLoader(train_data, sampler=train_sampler, batch_size=args.train_batch_size)

        model.train()
        for epoch in range(int(args.num_train_filter_epochs)):
            for step, batch in enumerate(tqdm(train_dataloader, desc="Epoch %d" % (epoch + 1))):
                batch = tuple(t.to(device) for t in batch)
                (input_ids, input_mask,
                 input_ids_, input_mask_,
                 start_positions, end_positions) = batch
                _, loss = model(input_ids, input_mask,
                                input_ids_, input_mask_,
                                start_positions, end_positions)
                if n_gpu > 1:
                    loss = loss.mean()  # mean() to average on multi-gpu.
                if args.gradient_accumulation_steps > 1:
                    loss = loss / args.gradient_accumulation_steps
                loss.backward()
                if (step + 1) % args.gradient_accumulation_steps == 0:
                    if args.optimize_on_cpu:
                        model.to('cpu')
                    optimizer.step()  # We have accumulated enought gradients
                    model.zero_grad()
                    if args.optimize_on_cpu:
                        model.to(device)
                    global_step += 1

            processor.save(epoch + 1)

    if args.do_train_sparse:
        train_examples = read_squad_examples(
            input_file=args.train_file, is_training=True, draft=args.draft, draft_num_examples=args.draft_num_examples)
        num_train_steps = int(
            len(
                train_examples) / args.train_batch_size / args.gradient_accumulation_steps * args.num_train_sparse_epochs)

        '''
        if args.parallel or n_gpu > 1:
            optimizer = Adam(model.module.sparse_layer.parameters())
        else:
            optimizer = Adam(model.sparse_layer.parameters())
        '''

        no_decay = ['bias', 'gamma', 'beta']
        optimizer_parameters = [
            {'params': [p for n, p in model.named_parameters() if (n not in no_decay) and ('filter' not in n)],
             'weight_decay_rate': 0.01},
            {'params': [p for n, p in model.named_parameters() if (n in no_decay) and ('filter' not in n)],
             'weight_decay_rate': 0.0}
        ]
        optimizer = BERTAdam(optimizer_parameters,
                             lr=args.learning_rate,
                             warmup=args.warmup_proportion,
                             t_total=num_train_steps)

        bind_model(processor, model, optimizer)

        global_step = 0
        train_features, train_features_ = convert_examples_to_features(
            examples=train_examples,
            tokenizer=tokenizer,
            max_seq_length=args.max_seq_length,
            doc_stride=args.doc_stride,
            max_query_length=args.max_query_length,
            is_training=True)
        logger.info("***** Running sparse training *****")
        logger.info("  Num orig examples = %d", len(train_examples))
        logger.info("  Num split examples = %d", len(train_features))
        logger.info("  Batch size = %d", args.train_batch_size)
        logger.info("  Num steps = %d", num_train_steps)

        all_input_ids = torch.tensor([f.input_ids for f in train_features], dtype=torch.long)
        all_input_mask = torch.tensor([f.input_mask for f in train_features], dtype=torch.long)
        all_start_positions = torch.tensor([f.start_position for f in train_features], dtype=torch.long)
        all_end_positions = torch.tensor([f.end_position for f in train_features], dtype=torch.long)

        all_input_ids_ = torch.tensor([f.input_ids for f in train_features_], dtype=torch.long)
        all_input_mask_ = torch.tensor([f.input_mask for f in train_features_], dtype=torch.long)

        if args.fp16:
            (all_input_ids, all_input_mask,
             all_start_positions,
             all_end_positions) = tuple(t.half() for t in (all_input_ids, all_input_mask,
                                                           all_start_positions, all_end_positions))
            all_input_ids_, all_input_mask_ = tuple(t.half() for t in (all_input_ids_, all_input_mask_))

        train_data = TensorDataset(all_input_ids, all_input_mask,
                                   all_input_ids_, all_input_mask_,
                                   all_start_positions, all_end_positions)
        if args.local_rank == -1:
            train_sampler = RandomSampler(train_data)
        else:
            train_sampler = DistributedSampler(train_data)
        train_dataloader = DataLoader(train_data, sampler=train_sampler, batch_size=args.train_batch_size)

        model.train()
        for epoch in range(int(args.num_train_sparse_epochs)):
            for step, batch in enumerate(tqdm(train_dataloader, desc="Epoch %d" % (epoch + 1))):
                batch = tuple(t.to(device) for t in batch)
                (input_ids, input_mask,
                 input_ids_, input_mask_,
                 start_positions, end_positions) = batch
                loss, _ = model(input_ids, input_mask,
                                input_ids_, input_mask_,
                                start_positions, end_positions)
                if n_gpu > 1:
                    loss = loss.mean()  # mean() to average on multi-gpu.
                if args.gradient_accumulation_steps > 1:
                    loss = loss / args.gradient_accumulation_steps
                loss.backward()
                if (step + 1) % args.gradient_accumulation_steps == 0:
                    if args.optimize_on_cpu:
                        model.to('cpu')
                    optimizer.step()  # We have accumulated enought gradients
                    model.zero_grad()
                    if args.optimize_on_cpu:
                        model.to(device)
                    global_step += 1

            processor.save(epoch + 1)

    if args.do_predict:
        eval_examples = read_squad_examples(
            input_file=args.predict_file, is_training=False, draft=args.draft,
            draft_num_examples=args.draft_num_examples)
        eval_features, query_eval_features = convert_examples_to_features(
            examples=eval_examples,
            tokenizer=tokenizer,
            max_seq_length=args.max_seq_length,
            doc_stride=args.doc_stride,
            max_query_length=args.max_query_length,
            is_training=False)

        logger.info("***** Running predictions *****")
        logger.info("  Num orig examples = %d", len(eval_examples))
        logger.info("  Num split examples = %d", len(eval_features))
        logger.info("  Batch size = %d", args.predict_batch_size)

        all_input_ids = torch.tensor([f.input_ids for f in eval_features], dtype=torch.long)
        all_input_mask = torch.tensor([f.input_mask for f in eval_features], dtype=torch.long)
        all_input_ids_ = torch.tensor([f.input_ids for f in query_eval_features], dtype=torch.long)
        all_input_mask_ = torch.tensor([f.input_mask for f in query_eval_features], dtype=torch.long)
        all_example_index = torch.arange(all_input_ids.size(0), dtype=torch.long)
        if args.fp16:
            (all_input_ids, all_input_mask, all_example_index) = tuple(t.half() for t in (all_input_ids, all_input_mask,
                                                                                          all_example_index))
            all_input_ids_, all_input_mask_ = tuple(t.half() for t in (all_input_ids_, all_input_mask_))

        eval_data = TensorDataset(all_input_ids, all_input_mask,
                                  all_input_ids_, all_input_mask_,
                                  all_example_index)
        if args.local_rank == -1:
            eval_sampler = SequentialSampler(eval_data)
        else:
            eval_sampler = DistributedSampler(eval_data)
        eval_dataloader = DataLoader(eval_data, sampler=eval_sampler, batch_size=args.predict_batch_size)

        model.eval()
        logger.info("Start evaluating")

        def get_results():
            for (input_ids, input_mask, input_ids_, input_mask_, example_indices) in eval_dataloader:
                input_ids = input_ids.to(device)
                input_mask = input_mask.to(device)
                input_ids_ = input_ids_.to(device)
                input_mask_ = input_mask_.to(device)
                with torch.no_grad():
                    batch_all_logits, bs, be = model(input_ids, input_mask, input_ids_, input_mask_)
                for i, example_index in enumerate(example_indices):
                    all_logits = batch_all_logits[i].detach().cpu().numpy()
                    filter_start_logits = bs[i].detach().cpu().numpy()
                    filter_end_logits = be[i].detach().cpu().numpy()
                    eval_feature = eval_features[example_index.item()]
                    unique_id = int(eval_feature.unique_id)
                    yield RawResult(unique_id=unique_id,
                                    all_logits=all_logits,
                                    filter_start_logits=filter_start_logits,
                                    filter_end_logits=filter_end_logits)

        output_prediction_file = os.path.join(args.output_dir, "predictions.json")
        write_predictions(eval_examples, eval_features, get_results(),
                          args.max_answer_length,
                          not args.do_case, output_prediction_file, args.verbose_logging,
                          args.filter_threshold)

        if args.do_eval:
            command = "python %s %s %s" % (args.eval_script, args.gt_file, output_prediction_file)
            import subprocess
            process = subprocess.Popen(command.split(), stdout=subprocess.PIPE)
            output, error = process.communicate()

    if args.do_embed_question:
        question_examples = read_squad_examples(
            question_only=True,
            input_file=args.predict_file, is_training=False, draft=args.draft,
            draft_num_examples=args.draft_num_examples)
        query_eval_features = convert_questions_to_features(
            examples=question_examples,
            tokenizer=tokenizer,
            max_query_length=args.max_query_length)
        question_dataloader = convert_question_features_to_dataloader(query_eval_features, args.fp16, args.local_rank,
                                                                      args.predict_batch_size)

        model.eval()
        logger.info("Start embedding")
        question_results = get_question_results_(question_examples, query_eval_features, question_dataloader, device,
                                                 model)
        path = os.path.join(args.output_dir, args.question_emb_file)
        print('Writing %s' % path)
        write_question_results(question_results, query_eval_features, path)

    if args.do_index:
        if ':' not in args.predict_file:
            predict_files = [args.predict_file]
            offsets = [0]
        else:
            dirname = os.path.dirname(args.predict_file)
            basename = os.path.basename(args.predict_file)
            start, end = list(map(int, basename.split(':')))

            # skip files if possible
            if os.path.exists(args.index_file):
                with h5py.File(args.index_file, 'r') as f:
                    dids = list(map(int, f.keys()))
                start = int(max(dids) / 1000)
                print('%s exists; starting from %d' % (args.index_file, start))

            names = [str(i).zfill(4) for i in range(start, end)]
            predict_files = [os.path.join(dirname, name) for name in names]
            offsets = [int(each) * 1000 for each in names]

        for offset, predict_file in zip(offsets, predict_files):
            try:
                context_examples = read_squad_examples(
                    context_only=True,
                    input_file=predict_file, is_training=False, draft=args.draft,
                    draft_num_examples=args.draft_num_examples)

                for example in context_examples:
                    example.doc_idx += offset

                context_features = convert_documents_to_features(
                    examples=context_examples,
                    tokenizer=tokenizer,
                    max_seq_length=args.max_seq_length,
                    doc_stride=args.doc_stride)

                logger.info("***** Running indexing on %s *****" % predict_file)
                logger.info("  Num orig examples = %d", len(context_examples))
                logger.info("  Num split examples = %d", len(context_features))
                logger.info("  Batch size = %d", args.predict_batch_size)

                all_input_ids = torch.tensor([f.input_ids for f in context_features], dtype=torch.long)
                all_input_mask = torch.tensor([f.input_mask for f in context_features], dtype=torch.long)
                all_example_index = torch.arange(all_input_ids.size(0), dtype=torch.long)
                if args.fp16:
                    all_input_ids, all_input_mask, all_example_index = tuple(
                        t.half() for t in (all_input_ids, all_input_mask, all_example_index))

                context_data = TensorDataset(all_input_ids, all_input_mask, all_example_index)

                if args.local_rank == -1:
                    context_sampler = SequentialSampler(context_data)
                else:
                    context_sampler = DistributedSampler(context_data)
                context_dataloader = DataLoader(context_data, sampler=context_sampler,
                                                batch_size=args.predict_batch_size)

                model.eval()
                logger.info("Start indexing")

                def get_context_results():
                    for (input_ids, input_mask, example_indices) in context_dataloader:
                        input_ids = input_ids.to(device)
                        input_mask = input_mask.to(device)
                        with torch.no_grad():
                            batch_start, batch_end, batch_span_logits, bs, be, batch_sparse = model(input_ids,
                                                                                                    input_mask)
                        for i, example_index in enumerate(example_indices):
                            start = batch_start[i].detach().cpu().numpy().astype(args.dtype)
                            end = batch_end[i].detach().cpu().numpy().astype(args.dtype)
                            sparse = None
                            if batch_sparse is not None:
                                sparse = batch_sparse[i].detach().cpu().numpy().astype(args.dtype)
                            span_logits = batch_span_logits[i].detach().cpu().numpy().astype(args.dtype)
                            filter_start_logits = bs[i].detach().cpu().numpy().astype(args.dtype)
                            filter_end_logits = be[i].detach().cpu().numpy().astype(args.dtype)
                            context_feature = context_features[example_index.item()]
                            unique_id = int(context_feature.unique_id)
                            yield ContextResult(unique_id=unique_id,
                                                start=start,
                                                end=end,
                                                span_logits=span_logits,
                                                filter_start_logits=filter_start_logits,
                                                filter_end_logits=filter_end_logits,
                                                sparse=sparse)

                t0 = time()
                write_hdf5(context_examples, context_features, get_context_results(),
                           args.max_answer_length, not args.do_case, args.index_file, args.filter_threshold,
                           args.verbose_logging,
                           offset=args.compression_offset, scale=args.compression_scale,
                           split_by_para=args.split_by_para,
                           use_sparse=args.use_sparse)
                print('%s: %.1f mins' % (predict_file, (time() - t0) / 60))
            except Exception as e:
                with open(os.path.join(args.output_dir, 'error_files.txt'), 'a') as fp:
                    fp.write('error file: %s\n' % predict_file)
                    fp.write('error message: %s\n' % str(e))

    if args.do_serve:
        def get(text):
            question_examples = [SquadExample(qas_id='serve', question_text=text)]
            query_eval_features = convert_questions_to_features(
                examples=question_examples,
                tokenizer=tokenizer,
                max_query_length=16)
            question_dataloader = convert_question_features_to_dataloader(query_eval_features, args.fp16,
                                                                          args.local_rank,
                                                                          args.predict_batch_size)

            model.eval()

            question_results = get_question_results_(question_examples, query_eval_features, question_dataloader,
                                                     device, model)
            question_result = next(iter(question_results))
            out = question_result.start.tolist(), question_result.end.tolist(), question_result.span_logit.tolist()
            return out

        serve(get, args.port)