Beispiel #1
0
s = (Simulation().
    set_pragma_autocompact(True).
    add([
        ODESystemMass(f_decay_a, [DotMap(attr={ 'sub-a': 'u' }), DotMap(attr={ 'sub-a': 'd' })], dt=0.1),
        ODESystemMass(f_decay_b, [DotMap(attr={ 'sub-b': 'u' }), DotMap(attr={ 'sub-b': 'd' })], dt=0.1),
        Group(m=1000, attr={ 'sub-a': 'u' }),
        Group(m=1000, attr={ 'sub-b': 'u' }),
        probe_u,
        probe_d
    ]).
    run(1000)
)


# ----------------------------------------------------------------------------------------------------------------------
# (4) Results:

# Time series plot (group mass) -- Undecayed:
# series = [
#     { 'var': 'pau', 'lw': 2, 'linestyle': '-',  'marker': '+', 'color': 'red',  'markersize': 0, 'lbl': 'Substance A' },
#     { 'var': 'pbu', 'lw': 2, 'linestyle': '--', 'marker': 'o', 'color': 'blue', 'markersize': 0, 'lbl': 'Substance B' }
# ]
# probe_u.plot(series, fpath_fig=None, figsize=(20,4), legend_loc='upper right', dpi=150)

# Time series plot (group mass) -- Decayed:
series = [
    { 'var': 'pad', 'lw': 2, 'linestyle': '-',  'marker': '+', 'color': 'red',  'markersize': 0, 'lbl': 'Substance A' },
    { 'var': 'pbd', 'lw': 2, 'linestyle': '--', 'marker': 'o', 'color': 'blue', 'markersize': 0, 'lbl': 'Substance B' }
]
probe_d.plot(series, fpath_fig=None, figsize=(20,4), legend_loc='lower right', dpi=150)
Beispiel #2
0
        Group(m=950, attr={ 'flu': 's' }),
        Group(m= 50, attr={ 'flu': 'i' }),
        probe
    ]).
    run(1000)
)


# ----------------------------------------------------------------------------------------------------------------------
# (4) Results:

# Time series plot (group mass):
cmap = plt.get_cmap('tab20')
series = [
    { 'var': 'ps', 'lw': 2, 'linestyle': '--', 'marker': '+', 'color': cmap(0), 'markersize': 0, 'lbl': 'Susceptible' },
    { 'var': 'pi', 'lw': 2, 'linestyle': '-',  'marker': 'o', 'color': cmap(4), 'markersize': 0, 'lbl': 'Infectious'  },
    { 'var': 'pr', 'lw': 2, 'linestyle': ':',  'marker': 'x', 'color': cmap(6), 'markersize': 0, 'lbl': 'Recovered'   }
]
probe.plot(series, fpath_fig=None, figsize=(24,8), legend_loc='upper right', dpi=150)


# Time series plot (numeric integrator history):
# h = s.rules[0].get_hist()
# plt.plot(h[0], h[1][0], 'b-', h[0], h[1][1], 'g-', h[0], h[1][2], 'r-')  # S-blue, I-green, R-red
# plt.show()

# Phase plot (numeric integrator history):
# h = s.rules[0].get_hist()
# plt.plot(h[1][0], h[1][1], 'k-')
# plt.show()
Beispiel #3
0
    'lbl': 'Blue @ A'
}, {
    'var': 'p1',
    'lw': 2,
    'linestyle': '-',
    'marker': '',
    'color': 'red',
    'markersize': 0,
    'lbl': 'Red @ A'
}, {
    'var': 'p2',
    'lw': 2,
    'linestyle': '-',
    'marker': '',
    'color': 'navy',
    'markersize': 0,
    'lbl': 'Blue @ B'
}, {
    'var': 'p3',
    'lw': 2,
    'linestyle': '-',
    'marker': '',
    'color': 'firebrick',
    'markersize': 0,
    'lbl': 'Red @ B'
}]

fig = probe_sim.plot(series, figsize=(8, 6))
fig.suptitle(f'Segregation PRAM Model - {runs} iterations', y=0.965)
fig.savefig("Segregation_PRAM_out")