from Io.data_loader import create_batch_iter from preprocessing.data_processor import read_squad_data, convert_examples_to_features, read_qa_examples from pytorch_pretrained_bert.tokenization import BertTokenizer from predict.predict import main if __name__ == "__main__": read_squad_data( "/home/LAB/liqian/test/game/Fin/CCKS-Mrc/data/squad_like_test.json", "/home/LAB/liqian/test/game/Fin/CCKS-Mrc/data/", is_training=False) # examples = read_qa_examples("/home/LAB/liqian/test/game/ccks-2020-finance-transfer-ee-baseline-master/CCKS-Mrc/data/", "test") examples = read_qa_examples( "/home/LAB/liqian/test/game/Fin/CCKS-Mrc/data/", "test") main('/home/LAB/liqian/test/game/Fin/CCKS-Mrc/data/')
import json from predict.predict import main import os os.environ["CUDA_VISIBLE_DEVICES"] = "2,3" if __name__ == '__main__': test_data_path = "../data/data.json" data_dir = "../result/" main(test_data_path, data_dir) result = [] with open("../result/nbest_predictions.json", "r", encoding="utf-8") as fr: data = json.load(fr) for key, value in data.items(): res = {"answer": value[0]["text"], "id": key} result.append(res) with open("../result/result.json", 'w') as fr: json.dump(result, fr)
from Io.data_loader import create_batch_iter from preprocessing.data_processor import read_squad_data, convert_examples_to_features, read_qa_examples from pytorch_pretrained_bert.tokenization import BertTokenizer from predict.predict import main if __name__ == "__main__": read_squad_data("data/squad_like_test.json", "data/", is_training=False) examples = read_qa_examples("data/", "test") main('data/')