Beispiel #1
0
def contact_handler(bot, update):
    upd = update.to_dict()
    phone_no = str('+') + upd.get('message').get('contact').get('phone_number')
    content['contact'] = phone_no
    
    if check_skin('./temp/' + str(update.message.chat_id) + '.jpg'):
            
        preds_dict = predict_class('./temp/' + str(update.message.chat_id) + '.jpg')

        dict_dis = sorted(preds_dict.items(), key=lambda x: x[1], reverse=True)
        print(dict_dis)
        dict_dis = dict(sorted(preds_dict.items(), key=lambda x: x[1], reverse=True)[:3])
        max_val = max(dict_dis, key=dict_dis.get)
        if dict_dis[max_val] <= 39:
            bot.send_message(chat_id=update.message.chat_id, text='Healthy Skin Detected')
        else:
            plt.bar(range(len(dict_dis)), list(dict_dis.values()), align='center')
            x1,x2,y1,y2 = plt.axis()
            plt.axis((x1,x2,0,100))
            plt.xticks(range(len(dict_dis)), range(len(dict_dis)))
            plt.savefig('./temp/plots/tempfig.png')
            bot.send_message(chat_id=update.message.chat_id, text="Thank you!\n \nYou will recieve your report Soon")
            bot.send_photo(chat_id=update.message.chat_id, photo=open('./temp/plots/tempfig.png', 'rb'))
            os.remove('./temp/plots/tempfig.png')
            plt.cla()
            keys = list(dict_dis.keys())
            message_text = '0 ->' + str(keys[0]) + '\n1 ->' + str(keys[1]) + '\n2 ->' + str(keys[2]) 
            bot.send_message(chat_id=update.message.chat_id, text=message_text)
    else:
        bot.send_message(chat_id=update.message.chat_id, text='Please Upload Infected Skin Area for Diagnosis')
def predictor(img_url, filename):
    model = model_load(filename)
    img = get_image(img_url)
    labels, names = get_labels(filename)
    predicted_id, predicted_class, confidence = predict_class(
        img, model, labels, names)
    return predicted_id, predicted_class, confidence
def home():
    if request.method == 'POST':
        img = request.form['canvasData']
        predicted_class = predict_class(img)
        return render_template('index.html', predicted_class=predicted_class)
    else:
        return render_template('index.html')
Beispiel #4
0
def get_target_image_url():
    """
    @param url: post : The target image url.
    @returns: 201 : a label (cat / dog) as a flask/response object.
    @raise 400: if unable to download the image.
    """
    if not request.get_json():
        abort(400)
    else:
        data = request.get_json(force=True)
        if not data.get('image_url'):
            abort(400)
        else:
            url = data.get('image_url')
            r = requests.get(url)
            image_dir = os.path.join('/media', str(url).split('/')[-1])
            
            if not os.path.exists('/media'):
                os.mkdir('/media')
            
            if not os.path.exists(image_dir):
                with open(image_dir, 'wb') as f:
                    f.write(r.content)
                status = 200
            else:
                status = 201
            class_name = predict_class(os.path.join("..", image_dir))
            return jsonify({'class': class_name,
                            'status': status})
Beispiel #5
0
def main(argv):
    try:
        opts, args = getopt.getopt(argv, "htp:", ["train", "predict="])
    except getopt.GetoptError:
        logging.info(
            'Incorrect argument... \nmain.py -t or --train to train the model || main.py -p or --predict <Text> to predict on model output'
        )
        sys.exit(2)

    for opt, arg in opts:
        if opt == '-h':
            logging.info(
                'main.py -t or --train to train the model || main.py -p or --predict <Text> to predict on model output'
            )
            sys.exit()
        elif opt in ("-t", "--train"):
            logging.info("training model started...")
            get_data = LoadTrainingData(CONFIG_PATH)
            df = get_data.load_data_from_tables()
            logging.info(f"training data loaded... {df.shape}")
            train_model(df)
            logging.info("training model finished!")
        elif opt in ("-p", "--predict"):
            text = arg
            if len(text) > 10:
                main_prouct = predict_class(text)
                logging.info("Prediction done!")
            else:
                logging.info("too small sentence to predict")
Beispiel #6
0
def predict():
    data = request.get_json()
    data = json.dumps(data)
    pred, pred_proba = predict_class(model, lecancer, lerelationships, history_class_codes, ethnicity_codes, data, df)

    print(pred, pred_proba[0].tolist())
    return_obj = {
        'pred': pred,
        'predProba': pred_proba[0].tolist()
    }
    return json.dumps(return_obj)
Beispiel #7
0
def classify_audio():

    #sends username and youtube url
    json_data = request.json
    url = json_data['url']
    username = json_data['username']

    label = predict_class(url)

    if label == None:
        return json.dumps('error')

    emot = label_to_emot[label]

    addUrlToDb(username, emot, url)
    return json.dumps(emot)
Beispiel #8
0
def process_img(img):
    # time.sleep(2)
    preds = predict.predict_class(img)
    with lock:
        global last_object_class
        global last_object_count
        global last_object_ts
        global detected_object_class
        last_object_ts = time.time()
        detected_object_class = ""
        if last_object_class == preds and (last_object_ts - time.time()) < 1:
            last_object_count += 1
            if last_object_count == last_object_target_count:
                detected_object_class = last_object_class
                last_object_count = 0
                print(detected_object_class)
        else:
            last_object_class = copy.deepcopy(preds)
            last_object_count = 0


    return True
Beispiel #9
0
from glob import glob
import cv2
import numpy as np
# from skin_detection import get_hist, check_skin
# img_list = sorted(glob('./imgs/*.jpg'))

# for img in img_list:
#     hist = get_hist(img)
#     check = check_skin(hist)
#     if check:
#         print(img, ':Skin')
#     else:
#         print(img, ':Not Skin')

from predict import predict_class, classes

imgs_list = ['03DermatitisArm.jpg']
#  '03eczema091205.jpg',
#  '04acidBurn89-GP3.jpg',
#  'chapped-fissured-feet-34.jpg']

for img in imgs_list:
    dict_dis = predict_class('./imgs/' + img)
    dict_dis = sorted(dict_dis.items(), key=lambda x: x[1], reverse=True)
    print(dict_dis[:3])
Beispiel #10
0
def smartatm(phrase):
    result = predict.predict_class(phrase)
    apilog.info("Predict Request : " + phrase)
    apilog.info("Predicted as    : " + result)
    return result