Beispiel #1
0
    def __init__(self,
                 cfg_file_name,
                 test_size_prob,
                 data_dir,
                 model_dir,
                 model_name,
                 level,
                 dump_file=False,
                 has_feat=False,
                 max_num=0,
                 min_num=0):
        Process.__init__(self)
        self.preprocess = Preprocess(cfg_file_name)
        self.test_size_prob = test_size_prob
        self.data_dir = data_dir
        self.model_dir = model_dir
        self.model_name = model_name
        self.level = level

        self.cnt = 0
        self.train_features = []
        self.train_labels = []
        self.test_features = []
        self.test_labels = []
        self.test_lines = []
        self.train_lines = []
        self.dump_file = dump_file
        self.has_feat = has_feat
        self.load_label = True

        if max_num != 0 and min_num != 0:
            self.sample_adjust = SampleAdjust(min_num, max_num, seed=20)
    def __init__(self, context):
        super(Classifier, self).__init__(context)
        logging.info("Classifier module init start")
        cur_dir = os.path.dirname(os.path.abspath(__file__)) or os.getcwd()
        model_dir = cur_dir + "/model"
        #model_dir = "/home/fenghua.huang/classifier_v2/model"
        map_file = cur_dir + "/resource/cate_id.cfg"
        cfg_file = cur_dir + "/classifier.cfg"
        cid_field_file = cur_dir + "/resource/fields.cfg"
        self.cid_fields = dict()  #部分cid的字段要特别处理

        self.resource_process(model_dir, cfg_file, map_file, cid_field_file)
        self.classifier = ClassTreePedict(map_file, model_dir)
        self.preprocess = Preprocess(cfg_file)
        self.start_node = self.get_start_node(cfg_file)
def main():
    config = configparser.ConfigParser()
    config.read('config.ini')

    get_raw_data = bool(config.get('MAIN', 'get_raw_data'))
    train = bool(config.get('MAIN', 'train'))

    if get_raw_data:
        train_data = DataLoader().load_data((512, 512))
        preprocessor = Preprocess()
        preprocessor.preprocess(train_data)

    x_train, y_train = LoadPickle().load_pickle()

    if train:
        model = BaseModel()
        Train(x_train, y_train, model)
    def __init__(self, cfg_file_name):
        self.config = ConfigParser.ConfigParser()
        self.cur_dir = os.path.dirname(os.path.abspath(cfg_file_name))
        self.cfg_parser(cfg_file_name)
        self.preprocess = Preprocess(cfg_file_name)

        self.cnt = 0
        self.train_features = []
        self.train_labels = []

        self.test_features = []
        self.test_labels = []
        self.test_names = []

        self._train = Train(self.space, self.params)
        self._predict = Predict()
        self._rule = Rule()
        
        self._tree = ClassTreePedict('./resource/cate_id.cfg', './model')
    def __init__(self, cfg_file_name, rule_file, cate_id_file, out_dir):
        self.preprocess = Preprocess(cfg_file_name)
        self._rule = Rule()
        self._rule.load_rule(rule_file)
        self.out_dir = out_dir

        cate_file = open(cate_id_file, 'r')
        lines = cate_file.readlines()
        self.cate_map = json.loads(''.join(lines))
        cate_file.close()

        self.cate_fp = {}
Beispiel #6
0
class TrainAll(object):
    def __init__(self, cfg_file_name):
        self.features = []
        self.labels = []
        self.cnt = 0
        self.preprocess = Preprocess(cfg_file_name)

    def load_data_path(self, path, level=0):
        if os.path.isdir(path):
            for file in os.listdir(path):
                t_path = os.path.join(path, file)
                self.load_data_path(t_path, level)

        elif os.path.isfile(path):
            fp = open(path, 'r')
            for line in fp:
                line = line.strip('\n')
                fields = line.split('\t')
                try:
                    cat_name = fields[0].decode('u8')
                    name = fields[1].decode('u8')
                    brand = fields[2].decode('u8')
                    price = fields[3]
                    if len(fields) == 5:
                        ori_cat = fields[4]
                    #cat_name, name, brand, price = line.split('\t')
                    #cat_name, name, feats = line.strip('\n').split('\t')
                    cat_lst = json.loads(cat_name)
                    if len(cat_lst) < level + 1:
                        continue
                    labels = u'$'.join(cat_lst[:level + 1])
                except Exception, e:
                    print >> sys.stderr, "Error:", line
                    print >> sys.stderr, e
                    continue
                self.cnt += 1
                if self.cnt % 10000 == 0:
                    print >> sys.stderr, "load %d samples..." % self.cnt

                if cat_lst[0] in [u'服饰鞋帽', u'个人护理', u'母婴用品$']:
                    continue

                features = self.preprocess.process(name,
                                                   cat_name,
                                                   brand,
                                                   price,
                                                   level=level)

                self.features.append(features)
                self.labels.append(labels)

            fp.close()
Beispiel #7
0
    def __init__(self, model_name='root', opt='train'):

        self.model_name = model_name
        self.preprocess = Preprocess(CONFIG_FILE)
        self.d_model_map = self.preprocess.d_models

        if opt == 'predict':
            self.predict_obj = Predict()
            if self.d_model_map.get(self.model_name, None):
                self.predict_obj.load_model(MODEL_PATH + 'model/' +
                                            self.model_name + '.model')
            else:
                self.predict_obj.load_model(MODEL_PATH + 'model/' +
                                            'root.model')
                print "\nNote: using the default model--root.model to predict.\n"

        self.train_features = []
        self.train_labels = []

        self.predict_features = []
        self.predict_labels = []

        self.predict_data_id = []
        self.predict_result = []
Beispiel #8
0
def store(brandinfo, question, context, answer):

    brandinfo = utf_string(brandinfo).lower().split('>')
    question = utf_string(question).lower()
    context = utf_string(context).lower()
    answer = utf_string(answer).lower()
    # print brandinfo
    # print question
    # print 'answer',answer

    #1. preprocess
    rule, s_new_question = Preprocess().run(question, context)
    if not rule:
        s_answer = '该问题不规范,该问题不规范'
        print s_answer
        return s_answer
    # print 's_new_question:', s_new_question

    #2. question classify
    question_type = 0  #classify(s_new_question)

    # s_new_question = '%s<space>%s' % (brandinfo, s_new_question)
    #3. keyword extract
    o_extract = NewQAExtractWord()
    dic = o_extract.extract_master(s_new_question, question_type)
    dic["answer"] = answer

    #define product and brand
    if brandinfo[0] not in dic['brand']:
        dic['brand'].append(brandinfo[0])
    if brandinfo[0] not in dic['product']:
        dic['product'].append(brandinfo[1])

    #4 replace brand and product use special symbol
    dic = replace_product(dic)

    #5 sentvec
    dic['sent_vec'] = sent_vec(dic['question'])
    #6 keywords sentvec
    kwords = keywords(dic)
    if kwords:  # if no keywords
        dic['kword_vec'] = sent_vec(kwords)

    ins = Saver()
    ins.pass_data(dic)
    print 'successful'
Beispiel #9
0
class EvalNode(Process):
    def __init__(self,
                 cfg_file_name,
                 test_size_prob,
                 data_dir,
                 model_dir,
                 model_name,
                 level,
                 dump_file=False,
                 has_feat=False,
                 max_num=0,
                 min_num=0):
        Process.__init__(self)
        self.preprocess = Preprocess(cfg_file_name)
        self.test_size_prob = test_size_prob
        self.data_dir = data_dir
        self.model_dir = model_dir
        self.model_name = model_name
        self.level = level

        self.cnt = 0
        self.train_features = []
        self.train_labels = []
        self.test_features = []
        self.test_labels = []
        self.test_lines = []
        self.train_lines = []
        self.dump_file = dump_file
        self.has_feat = has_feat
        self.load_label = True

        if max_num != 0 and min_num != 0:
            self.sample_adjust = SampleAdjust(min_num, max_num, seed=20)

        #self.cate_trans = {u'运动户外$女装':[u'服装配饰'], u'运动户外$男装':[u'服装配饰'], u'运动户外$运动女鞋':[u'鞋'], u'运动户外$运动男鞋':[u'鞋'], u'运动户外$户外鞋':[u'鞋'], u'母婴用品$童装':[u'服装配饰'], u'母婴用品$宝宝洗护':[u'个护化妆']}

    def cate_lst_transform(self, cate_lst):
        key = u'$'.join(cate_lst[:2])
        if key in self.cate_trans:
            return self.cate_trans[cate_lst]
        else:
            return cate_lst

    # level训练分类器类目的level
    def load_data_path(self,
                       path,
                       level=0,
                       test_size_prob=0.0,
                       has_feat=False):
        if os.path.isdir(path):
            for file in os.listdir(path):
                t_path = os.path.join(path, file)
                self.load_data_path(t_path, level, test_size_prob, has_feat)

        elif os.path.isfile(path):
            if has_feat and not path.endswith("feature"):
                return
            fp = open(path, 'r')
            for line in fp:
                line = line.strip('\n')
                fields = line.split('\t')
                try:
                    cat_name = fields[0].decode('u8')
                    name = fields[1].decode('u8')
                    if len(fields) > 3:
                        brand = fields[2].decode('u8')
                        price = fields[3]
                    else:
                        brand = u''
                        price = 0
                    if has_feat:
                        features = json.loads(fields[-1])
                        if not isinstance(features, dict):
                            print >> sys.stderr, "Error:", line
                            continue
                    #cat_name, name, brand, price = line.split('\t')
                    #cat_name, name, feats = line.strip('\n').split('\t')
                    cat_lst = json.loads(cat_name)

                    #######################
                    # 类别替换
                    #cat_lst = self.cate_lst_transform(cat_lst)
                    ######################

                    if len(cat_lst) < level + 1:
                        continue
                    labels = u'$'.join(cat_lst[:level + 1])
                except Exception, e:
                    print >> sys.stderr, "Error:", line
                    print >> sys.stderr, e
                    traceback.print_exc()
                    continue
                self.cnt += 1
                if self.cnt % 10000 == 0:
                    print >> sys.stderr, "load %d samples..." % self.cnt

                if cat_lst[0] in [u'服饰鞋帽', u'个人护理', u'母婴用品$']:
                    continue

                if test_size_prob >= 1.0:
                    is_train = False
                elif test_size_prob <= 0.0:
                    is_train = True
                else:
                    if random.random() < test_size_prob:
                        is_train = False
                    else:
                        is_train = True

                if is_train:
                    if not has_feat:
                        if self.load_label:
                            features = self.preprocess.process(name,
                                                               cat_name,
                                                               brand,
                                                               price,
                                                               level=level)
                        else:
                            features = self.preprocess.process(
                                name, u"[]", brand, price)
                    if len(features) == 0:
                        continue
                    # 是否平衡训练样本的数量
                    if hasattr(self, 'sample_adjust'):
                        self.sample_adjust.add_sample(features, labels)
                    else:
                        self.train_features.append(features)
                        self.train_labels.append(labels)
                    # 是否将训练集输出到文件
                    if self.dump_file:
                        self.train_lines.append(line)
                else:
                    if not has_feat:
                        features = self.preprocess.process(name)
                    self.test_features.append(features)
                    self.test_labels.append(labels)
                    #self.test_names.append(name)
                    self.test_lines.append(line)
                # print json.dumps(features, ensure_ascii=False).encode('u8')
            fp.close()
class ClassifierRun():
    def __init__(self, cfg_file_name):
        self.config = ConfigParser.ConfigParser()
        self.cur_dir = os.path.dirname(os.path.abspath(cfg_file_name))
        self.cfg_parser(cfg_file_name)
        self.preprocess = Preprocess(cfg_file_name)

        self.cnt = 0
        self.train_features = []
        self.train_labels = []

        self.test_features = []
        self.test_labels = []
        self.test_names = []

        self._train = Train(self.space, self.params)
        self._predict = Predict()
        self._rule = Rule()
        
        self._tree = ClassTreePedict('./resource/cate_id.cfg', './model')

    def cfg_parser(self, cfg_file_name):
        self.config.read(cfg_file_name)
        section = 'model'
        if self.config.has_option(section, 'model_file'):
            self.model_path = self.config.get(section, 'model_file')
        else:
            self.model_path = './model/testmodel'

        if self.config.has_option(section, 'model_dir'):
            self.model_dir = self.config.get(section, 'model_dir')
        else:
            self.model_dir = './model'
       
        if self.config.has_option(section, 'vec_space') and self.config.get(section, 'vec_space') == 'topic':
            self.space = 'topic'
        else:
            self.space = 'word'

        if self.space == 'topic':
            if self.config.has_section('topic_param'):
                self.params = dict(self.config.items('topic_param'))
        elif self.space == 'word':
            if self.config.has_section('word_param'):
                self.params = dict(self.config.items('word_param'))

        section = 'evaluation'
        self.test_size_prob = 1.0
        if self.config.has_option(section, 'test_size'):
            self.test_size_prob = self.config.getfloat(section, 'test_size')
        if self.config.has_option(section, 'random_state'):
            seed = self.config.getint(section, 'random_state')
            random.seed(seed)
            
        self.level = 0
        section = 'default'
        if self.config.has_option(section, 'level'):
            self.level = self.config.getint(section, 'level')
        if self.config.has_option(section, 'cate_id_file'):
            self.cate_id_file = self.config.get(section, 'cate_id_file')
        else:
            self.cate_id_file = "resource/cate_id.cfg"

        logging.info('[Done] config parsing')       
        logging.info('use %s space, params=%s' %(self.space, json.dumps(self.params) ))
 
    def train(self):
        self._train.train(self.train_features, self.train_labels)
        self._train.dump_model(self.model_path)

    def test(self):
        if self.model_path.endswith('rule'):
            self._rule.load_rule(self.model_path)
            is_rule = True
        else:
            self._predict.load_model(self.model_path)
            is_rule = False
        print len(self.test_features)
        for (features, label, name) in zip(self.test_features, self.test_labels, self.test_names):
            if is_rule:
                result = self._rule.predict(name, 0)
            else:
                result = self._predict.predict(features)
            print result.encode('u8'),'\t', label.encode('u8'),'\t', name.encode('u8'), '\t', json.dumps(features,'\t', ensure_ascii=False).encode('u8')

    def testone(self, name, cat_name, brand, price):
        tree = ClassTreePedict(self.cate_id_file, model_dir)
        features = self.preprocess.process(name, cat_name, brand, price, level=0)
        features = json.loads('{"Eden": 1, "Botkier": 1, "Satchel": 1, "马毛": 1, "女士": 1, "柏柯尔": 1, "拼接": 1, "手提包": 1, "Small": 1 }')
        result = tree.predict(name, features, indexclass=u"root") 
        print result.encode('u8'), name.encode('u8'), json.dumps(features, ensure_ascii=False).encode('u8')

    # map_cfg 类目和ID的映射文件,model_dir 存放模型文件目录,data_file 数据文件
    def predict(self, map_cfg, model_dir, data_file_name):
        tree = ClassTreePedict(map_cfg, model_dir)
        data_file = open(data_file_name, 'r')
        for line in data_file:
            line = line.strip()
            try:
                old_cate, cid_cate, name, brand, price = line.decode('u8').split(u'\t')
            except Exception,e :
                print >> sys.stderr, "Error:", line
                print >> sys.stderr, e
                sys.exit()
            cat_name = json.dumps(cid_cate.split(','))
            price = float(price)
            features = self.preprocess.process(name, cat_name, brand, price, level=0)
            #result = tree.predict(name, features, indexclass=u"root")
            indexclass = u'root'
            result = tree.predict(name, features, indexclass, price, cat_name)
            print "%s\t%s\t%s" %(result.encode('u8'), old_cate.encode('u8'), name.encode('u8'))
        data_file.close()
Beispiel #11
0
 def __init__(self, cfg_file_name):
     self.features = []
     self.labels = []
     self.cnt = 0
     self.preprocess = Preprocess(cfg_file_name)
class Classifier(Module):
    def __init__(self, context):
        super(Classifier, self).__init__(context)
        logging.info("Classifier module init start")
        cur_dir = os.path.dirname(os.path.abspath(__file__)) or os.getcwd()
        model_dir = cur_dir + "/model"
        #model_dir = "/home/fenghua.huang/classifier_v2/model"
        map_file = cur_dir + "/resource/cate_id.cfg"
        cfg_file = cur_dir + "/classifier.cfg"
        cid_field_file = cur_dir + "/resource/fields.cfg"
        self.cid_fields = dict()  #部分cid的字段要特别处理

        self.resource_process(model_dir, cfg_file, map_file, cid_field_file)
        self.classifier = ClassTreePedict(map_file, model_dir)
        self.preprocess = Preprocess(cfg_file)
        self.start_node = self.get_start_node(cfg_file)

    def get_start_node(self, cfg_file):
        # 开始分类的节点,默认是根节点 u'root'
        # 如使用类目映射,可在 u'root'节点前增加一个节点,使用规则跳到相应节点
        start_node = u'root'
        self.config = ConfigParser.ConfigParser()
        self.config.read(cfg_file)
        section = 'default'
        if self.config.has_option(section, 'start_node'):
            start_node = self.config.get(section, 'start_node')
            start_node = start_node.decode('u8')
        return start_node

    def classify(self, cid, name, pid, brand, price):
        features = self.preprocess.process(name, pid, brand, price)
        #print json.dumps(features, ensure_ascii=False).encode('u8')
        result = self.classifier.predict(name, features, self.start_node,
                                         price, pid)
        return result

    def load_field_file(self, field_file):
        ''' 读取配置文件(cid对应的需要合并的字段) '''
        with open(field_file, 'r') as rf:
            for line in rf:
                line = line.strip()
                if not line or line.startswith('#'):
                    continue
                try:
                    cid, ori_field, dest_field = line.split('#')
                    fields_lst = self.cid_fields.setdefault(cid, [])
                    fields_lst.append((ori_field, dest_field))
                except:
                    logging.error("wrong field config line: %s" % line)
            logging.info("load file %s done" % field_file)

    def chg_cid_fields(self, item_base):
        '''
            用于部分字段的调整
            主要用于,对于某个cid,需要将subtitle的值合并到name中
        '''
        cid = item_base['cid']
        if cid in self.cid_fields:
            for (ori_field, dest_field) in self.cid_fields[cid]:
                if ori_field in item_base and dest_field in item_base:
                    if isinstance(item_base[ori_field],
                                  unicode) and isinstance(
                                      item_base[dest_field], unicode):
                        item_base[dest_field] += ' '
                        item_base[dest_field] += item_base[ori_field]
                    if isinstance(item_base[ori_field],
                                  unicode) and isinstance(
                                      item_base[dest_field], list):
                        item_base[dest_field].append(item_base[ori_field])

                    if isinstance(item_base[ori_field], list) and isinstance(
                            item_base[dest_field], list):
                        item_base[dest_field].extend(item_base[ori_field])
                    if isinstance(item_base[ori_field], list) and isinstance(
                            item_base[dest_field], unicode):
                        item_base[dest_field] += ' '
                        item_base[dest_field] += ' '.join(item_base[ori_field])

    def __call__(self, item_base, item_profile):
        try:
            self.chg_cid_fields(item_base)

            cid = item_base["cid"]
            name = item_base.get("name", None)
            pid = item_base.get("pid", None)
            brand = u" ".join(item_base.get("brand", ""))
            cat = []
            cat.extend(pid)
            cat_str = json.dumps(cat)
            price = item_base.get("price", 0)

            result = self.classify(cid, name, cat_str, brand, price)
            result = result.split(u'$')

            item_profile["category_name_new"] = []
            item_profile["category_name_new"].extend(result)
            item_profile["category_id_new"] = []

            ids = []
            for i in range(len(result)):
                key = '$'.join(result[:i + 1])
                if key in self.classifier.mapclass:
                    ids.append(int(self.classifier.mapclass[key]))
                else:
                    logging.error("find category id error, key: %s" %
                                  key.encode('u8'))
            item_profile["category_id_new"] = ids
            #item_profile["category_id_new"].extend(map(lambda x:self.classifier.mapclass[x], result.split("$")))
        except Exception as e:
            logging.error(traceback.print_exc())
            logging.error("category_name: %s", e)
        return {"status": 0}

    def resource_process(self, model_dir, cfg_file, map_file, cid_field_file):
        self.add_resource_file(model_dir)
        self.add_resource_file(cfg_file)
        self.add_resource_file(map_file)
        self.load_field_file(cid_field_file)
        self.add_resource_file(cid_field_file)

    def test(self):
        cid = u"Cjianyi"
        # name = u"迪士尼(Disney)米妮K金镶钻手机链读卡器 (短)"
        # name = u"佳能(Canon)CL-97彩色墨盒 (适用佳能E568)"
        # name = u"东芝(TOSHIBA) 32A150C 32英寸 高清液晶电视(黑色)"
        # name = u"东芝(TOSHIBA) 55X1000C 55寸 全高清3D LED液晶电视"
        # name = u"东芝(TOSHIBA)42寸液晶电视42A3000C"
        name = u"三星(SAMSUNG)M55 黑色墨盒(适用SF-350)"
        brand = u""
        #cate = u""
        category = json.dumps([u"0"])
        price = -1
        logging.info("start to test")
        print self.classify(cid, name, category, brand, price)
        '''
Beispiel #13
0
class Core_Process(object):
    """
    Func: training and predict process.
    """
    def __init__(self, model_name='root', opt='train'):

        self.model_name = model_name
        self.preprocess = Preprocess(CONFIG_FILE)
        self.d_model_map = self.preprocess.d_models

        if opt == 'predict':
            self.predict_obj = Predict()
            if self.d_model_map.get(self.model_name, None):
                self.predict_obj.load_model(MODEL_PATH + 'model/' +
                                            self.model_name + '.model')
            else:
                self.predict_obj.load_model(MODEL_PATH + 'model/' +
                                            'root.model')
                print "\nNote: using the default model--root.model to predict.\n"

        self.train_features = []
        self.train_labels = []

        self.predict_features = []
        self.predict_labels = []

        self.predict_data_id = []
        self.predict_result = []

    def load_data_path(self, data_path):
        """
        Input: 
            data_path <string>: the input file path.
        Output:
            None
        """
        print data_path
        fp = open(data_path, 'r')
        for json_line in fp.readlines():
            d_line = json.loads(json_line)

            data_id = d_line['id']
            desc_text = ' '.join(d_line['description'].replace('.',
                                                               ' ').split())
            labels = d_line['label']
            features = self.preprocess.process(title='',
                                               content=desc_text,
                                               model_name=self.model_name)

            self.train_features.append(features)
            self.train_labels.append(labels)

            self.predict_data_id.append(data_id)

        fp.close()

        if len(self.train_features) == len(self.train_labels):
            pass
            #print '=========', len(self.train_features), len(self.train_labels)
        else:
            print 'ERROR: len(train_features) != len(train_labels)'

    def train_all(self, train_data_dir, model_name='root'):
        """
        train model with all training dataset, use model 'root' by default
        """
        self.load_data_path(train_data_dir)

        print >> sys.stderr, "train the model", train_data_dir

        space = 'word'
        #space = 'topic'    # There are some problems ?
        _train = Train(space, {})
        _train.train(self.train_features, self.train_labels)

        if not os.path.exists(os.path.join(MODEL_PATH, 'model')):
            os.makedirs(os.path.join(MODEL_PATH, 'model'))
        if not os.path.exists(os.path.join(MODEL_PATH, 'report')):
            os.makedirs(os.path.join(MODEL_PATH, 'report'))
        if not os.path.exists(os.path.join(MODEL_PATH, 'feature')):
            os.makedirs(os.path.join(MODEL_PATH, 'feature'))

        model_path = MODEL_PATH + 'model/' + model_name + ".model"
        print >> sys.stderr, "dump the model", model_path
        _train.dump_model(model_path)

        feature_file = os.path.join(MODEL_PATH,
                                    'feature/' + model_name + ".feature")

        #输出选择的特征及系数
        ffile = open(feature_file, 'w')
        feature_coef = _train.get_feature_coef()
        print "----------len featrue coef:", len(feature_coef)
        feature_len = 0
        for cate in feature_coef:
            print "-------------", cate
            print >> ffile, "%s" % (cate.encode('u8'))
            features = sorted(feature_coef[cate].items(),
                              key=lambda x: x[1],
                              reverse=True)
            feature_len = len(features)
            for f_item in features:
                print >> ffile, "\t%s\t%f" % (f_item[0].encode('u8'),
                                              f_item[1])
        ffile.close()
        print >> sys.stderr, "%d features has been selected!" % feature_len

    def evaluation(self, predict_file):
        """
        Func: evaluation of batch data.
        Input:
            predict_file <string>: input file path.
        Output:
            precision <float>: the precision of the prediction .
        """
        d_eval = {'corr': 0}
        all_cnt = 0
        precision = 0.0

        self.load_data_path(predict_file)
        self.predict_features = self.train_features
        self.predict_labels = self.train_labels
        all_cnt = len(self.predict_labels)

        for features, label in zip(self.predict_features, self.predict_labels):
            result = self.predict_obj.predict(features)
            if result == label:
                d_eval['corr'] += 1
            self.predict_result.append(result)
        if all_cnt == 0:
            print 'ERROR: all_cnt of predict_file: 0 !'
        else:
            precision = d_eval['corr'] * 1.0 / all_cnt

        print '========== all_cnt: ', all_cnt
        print '========== precision: ', precision

        return precision

    def run(self, opt, file_path):
        """
        opt: to determine train or predict
        file_path: traning data.
        """
        if opt == 'train':
            for mod_name, values in self.d_model_map.items():
                self.train_all(file_path, mod_name)

        elif opt == 'predict':
            predict_file = file_path
            result = self.evaluation(predict_file)

            report_file = os.path.join(MODEL_PATH,
                                       'report/' + self.model_name + ".report")
            rfile = open(report_file, 'a')
            rfile.write(str(file_path + '  precision: ') + str(result) + '\n')
            rfile.close()
            with open(report_file + '.rep', 'w') as rf:
                for tid, res in zip(self.predict_data_id, self.predict_result):
                    rf.write(tid + '\t' + res + '\n')

        else:
            print 'Nothing to do, please input train or predict.'

    def predict_one(self, desc_text):
        """
        Func: predict single data.
        Input:
            desc_text <string>: description text of the single data.
        Output:
            result <string>: the label of the input text.
        """
        features = self.preprocess.process(title='',
                                           content=desc_text,
                                           model_name=self.model_name)
        result = self.predict_obj.predict(features)

        return str(result)
class Classifier(Module):
    def __init__(self, context):
        super(Classifier, self).__init__(context)
        logging.info("Classifier module init start")
        cur_dir = os.path.dirname(os.path.abspath(__file__)) or os.getcwd()
        model_dir = cur_dir + "/model"
        #model_dir = "/home/fenghua.huang/classifier_v2/model"
        map_file = cur_dir + "/resource/cate_id.cfg"
        cfg_file = cur_dir + "/classifier.cfg"
        cid_field_file = cur_dir + "/resource/fields.cfg"
        self.cid_fields = dict() #部分cid的字段要特别处理

        self.resource_process(model_dir, cfg_file, map_file, cid_field_file)
        self.classifier = ClassTreePedict(map_file, model_dir)
        self.preprocess = Preprocess(cfg_file)
        self.start_node= self.get_start_node(cfg_file)

    def get_start_node(self, cfg_file):
        # 开始分类的节点,默认是根节点 u'root'
        # 如使用类目映射,可在 u'root'节点前增加一个节点,使用规则跳到相应节点
        start_node = u'root'
        self.config = ConfigParser.ConfigParser()
        self.config.read(cfg_file)
        section = 'default'
        if self.config.has_option(section, 'start_node'):
            start_node = self.config.get(section, 'start_node')
            start_node = start_node.decode('u8')
        return start_node
        
    def classify(self, cid, name, pid, brand, price):
        features = self.preprocess.process(name, pid, brand, price)
        #print json.dumps(features, ensure_ascii=False).encode('u8')
        index,result = self.classifier.predict(name, features, self.start_node, price, pid)
        return index,result

    def load_field_file(self, field_file):
        ''' 读取配置文件(cid对应的需要合并的字段) '''
        with open(field_file, 'r') as rf:
            for line in rf:
                line = line.strip()
                if not line or line.startswith('#'):
                    continue
                try:
                    cid, ori_field, dest_field = line.split('#') 
                    fields_lst = self.cid_fields.setdefault(cid, [])
                    fields_lst.append((ori_field, dest_field))
                except:
                    logging.error("wrong field config line: %s" %line)
            logging.info("load file %s done" %field_file)
    
    def chg_cid_fields(self, item_base):
        '''
            用于部分字段的调整
            主要用于,对于某个cid,需要将subtitle的值合并到name中
        '''
        cid = item_base['cid']
        if cid in self.cid_fields:
            for (ori_field, dest_field) in self.cid_fields[cid]:
                if ori_field in item_base and dest_field in item_base:
                    if isinstance(item_base[ori_field], unicode) and isinstance(item_base[dest_field], unicode):
                        item_base[dest_field] += ' '
                        item_base[dest_field] += item_base[ori_field]
                    if isinstance(item_base[ori_field], unicode) and isinstance(item_base[dest_field], list):
                        item_base[dest_field].append(item_base[ori_field])
                        
                    if isinstance(item_base[ori_field], list) and isinstance(item_base[dest_field], list):             
                        item_base[dest_field].extend(item_base[ori_field])
                    if isinstance(item_base[ori_field], list) and isinstance(item_base[dest_field], unicode):
                        item_base[dest_field] += ' '
                        item_base[dest_field] += ' '.join(item_base[ori_field])

    def __call__(self,item_base,item_profile):
        try:
            self.chg_cid_fields(item_base)

            cid = item_base["cid"]
            name=item_base.get("name",None)
            pid=item_base.get("pid",None)
            brand=u" ".join(item_base.get("brand", ""))
            cat=[]
            cat.extend(pid)
            cat_str=json.dumps(cat)
            price=item_base.get("price",0)
             
            result=self.classify(cid, name, cat_str, brand, price)
            result = result.split(u'$')

            item_profile["category_name_new"]=[]
            item_profile["category_name_new"].extend(result)
            item_profile["category_id_new"]=[]
            
            ids = []
            for i in range(len(result)):
                key = '$'.join(result[:i+1])
                if key in self.classifier.mapclass:
                    ids.append(int(self.classifier.mapclass[key]))
                else:
                    logging.error("find category id error, key: %s" %key.encode('u8'))
            item_profile["category_id_new"] = ids
            #item_profile["category_id_new"].extend(map(lambda x:self.classifier.mapclass[x], result.split("$")))
        except Exception as e:
            logging.error(traceback.print_exc())
            logging.error("category_name: %s", e)
        return {"status":0}

    def resource_process(self, model_dir, cfg_file, map_file, cid_field_file):
        self.add_resource_file(model_dir)
        self.add_resource_file(cfg_file)
        self.add_resource_file(map_file)
        self.load_field_file(cid_field_file)
        self.add_resource_file(cid_field_file)

    def test(self):
        '''
        cid = u"Cjianyi"
        name = u"46°宋河老窖500ml热销爆款,底价出击!"
        brand = u""
        #cate = u""
        category = json.dumps([u"0"])
        price = 135.0
        logging.info("start to test")
        print self.classify(cid, name, category, brand, price)        
        '''
        split_str= "$$$"
        file_name = "/home/python/wch/classifyData/testErrorData3.txt"
        with open(file_name, 'rb') as f:
            data = f.readlines()
            for line in data:
                prod = line.strip().split("$$")
                #print prod[0],prod[1],prod[2],prod[3]
                # print words[0], words[1], words[2], words[3]
                # ret = be.run_brand(prod[0],prod[1],prod[2],prod[3])
                name = prod[0]
                #price = prod[3]
                category = json.dumps([u"0"])
                index,predictCate = self.classify('', name,category, '', price=-1)
                if predictCate:
                    print index,predictCate.encode('u8')+split_str
                else:
                    f = open("/home/python/wch/classifyData/error_output_0509.txt",'a')
                    errors = prod[0]+split_str
                    print>>f, errors 
                    f.close()



        '''