Beispiel #1
0
tf.flags.DEFINE_integer("checkpoint_every", 100, "Save model after this many steps")
tf.flags.DEFINE_integer("num_checkpoints", 1000, "Number of checkpoints to store")
#tf.flags.DEFINE_string("checkpoint_dir", "", "Chechpoint directory")
tf.flags.DEFINE_boolean("allow_soft_placement", True, "Allow device soft device placement")
tf.flags.DEFINE_boolean("log_device_placement", False, "Log placement of ops on devices")

FLAGS = tf.flags.FLAGS
FLAGS._parse_flags()
print("\nParameters:")
for attr, value in sorted(FLAGS.__flags.items()):
    print("{}={}".format(attr.upper(), value))
print("")


print("Loading data...")
w = Word2Vec()
train_data = MData(word2vec=w)
train_data.open_file(FLAGS.positive_data_file, FLAGS.negative_data_file)
print("=" * 50)
print("training data size:", train_data.data_size)
print("training max len:", train_data.max_len)
print("=" * 50)


with tf.Graph().as_default():
    session_conf = tf.ConfigProto(
      allow_soft_placement=FLAGS.allow_soft_placement,
      log_device_placement=FLAGS.log_device_placement)
    session_conf.gpu_options.allow_growth=True
    sess = tf.Session(config=session_conf)
    with sess.as_default():
Beispiel #2
0
 # --batch_size: batch size
 # --model_type: model type
 # --num_layers: number of convolution layers
 # --data_type: dataset with which we want to train our model
 ################################
 # default parameters
 params = {
     "lr": 0.08,
     "ws": 4,
     "l2_reg": 0.0004,
     "epoch": 50,
     "batch_size": 200,
     "model_type": "BCNN",
     "num_layers": 2,
     "data_type": "BioASQ",
     "word2vec": Word2Vec()
 }
 ################################
 print("=" * 50)
 print("Parameters:")
 for k in sorted(params.keys()):
     print(k, ":", params[k])
 ################################
 if len(sys.argv) > 1:
     for arg in sys.argv[1:]:
         k = arg.split("=")[0][2:]
         v = arg.split("=")[1]
         params[k] = v
 ################################
 # Call train function to train our model
 train(
Beispiel #3
0
filter_size = int(FLAGS.filter_size)
#----------------------------- define parameter end ----------------------------------

#----------------------------- define a logger -------------------------------
logger = logging.getLogger("test")
logger.setLevel(logging.INFO)

fh = logging.FileHandler("./test.log", mode="w")
fh.setLevel(logging.INFO)

logger.addHandler(fh)
#----------------------------- define a logger end ----------------------------------

#------------------------------------load data -------------------------------
#load data
word2Vec = Word2Vec()
data_type = "WikiQA"
if data_type == "WikiQA":
    test_data = WikiQA(word2vec=word2Vec)
else:
    test_data = MSRP(word2vec=word2Vec)
test_data.open_file(mode="test")
#----------------------------------- load data end ----------------------

#----------------------------------- begin to train -----------------------------------
with tf.Graph().as_default():
    with tf.device("/gpu:1"):
        gpu_options = tf.GPUOptions(
            per_process_gpu_memory_fraction=FLAGS.gpu_options)
        session_conf = tf.ConfigProto(
            allow_soft_placement=FLAGS.allow_soft_placement,