Beispiel #1
0
from primeGen import primes2

PRIMELST = primes2(7071)

result = set()
for num1 in PRIMELST:
    for num2 in PRIMELST:
        for num3 in PRIMELST:
            temp = num1 * num1 + num2 ** 3 + num3 ** 4
            if temp < 5e7:
                result.add(temp)

print len(result)


Beispiel #2
0
# #UNSOLVED!
from primeGen import primes2, FermatPrimalityTest

PRIMELST = set(primes2(10000))

print len(PRIMELST)

def prop(lst):
    for num1 in lst:
        for num2 in lst:
            a = int(str(num1) + str(num2))
            b = int(str(num2) + str(num1))
            if a != b:
                if not FermatPrimalityTest(a):
                    return False
                elif not FermatPrimalityTest(b):
                    return False
                else:
                    # print 'quitting', a, b
                    continue
    return True

# print 'test'
# print prop([3, 7, 109, 673])

result = float('inf')
for num1 in PRIMELST:
    for num2 in PRIMELST:
        if num1 != num2:
            if prop([num1, num2]):
                for num3 in PRIMELST:
Beispiel #3
0
from primeGen import primes2

def pand(n):
	return sorted(str(n)) == [str(n) for n in range(1, len(str(n)) + 1)]


primelst = primes2(100000000)
# primesset = set(primes)

largest = 0

print 'starting loop'

for num in primelst:
	if pand(num):
		largest = num


print largest
Beispiel #4
0
from primeGen import primes2

PRIMELST = primes2(1000000)

def primeDivisors(number, divisors):
    result = 0
    for num in PRIMELST:
        if number % num == 0:
            result += 1
        if num > (number / 2.):
            break
        if result == divisors:
            return True
    return False



x = 1
y = 2
z = 3
b = 4
while True:
    if primeDivisors(x, 4) and primeDivisors(y, 4) and primeDivisors(z, 4) and primeDivisors(b, 4):
        print x, y, z, b
        break
    x += 1
    y += 1
    z += 1
    b += 1