Beispiel #1
0
def factor(n):
    if m_r(n):
        return [n]
    factorList = []
    while n != 1:
        if m_r(n):
            return (factorList + [n])
        d = pollard_rho(n)
        while n % d == 0:
            factorList.append(d)
            n /= d
    return factorList
Beispiel #2
0
def factor(n):
  if m_r(n):
    return [n]
  factorList = []
  while n != 1:
    if m_r(n):
      return (factorList + [n])
    d = pollard_rho(n)
    while n % d == 0:
      factorList.append(d)
      n /= d
  return factorList
Beispiel #3
0
def main():
  sumz = 0
  for i in xrange(LOWER_LIM, UPPER_LIM):
    if m_r(i):
      result = f(i, math.sqrt(i))
      sumz += result
      print i, result, '\t', time.time() - START
  print sumz % MOD
Beispiel #4
0
def primeProof(n):
    for digit in xrange(1, int(log(n, 10)) + 2):
        relevantDig = n % 10**digit - (n % 10**(digit - 1))
        m = int(n - relevantDig)
        digitChange = 10**(digit - 1)
        for i in xrange(0, 10):
            if m_r(m + i * digitChange):
                return False
    return True
Beispiel #5
0
def primeProof(n):
  for digit in xrange(1,int(log(n,10))+2):
    relevantDig = n % 10**digit - (n % 10** (digit-1))
    m           = int(n - relevantDig)
    digitChange = 10**(digit-1)
    for i in xrange(0, 10):
      if m_r(m + i* digitChange):
        return False
  return True
Beispiel #6
0
def D(a,b,k):
    sumz = 0
    for p in xrange(a,a+b):
        if m_r(p):
            inv = [0] + [ multInverse(x,p) for x in xrange(1, p)]
            tempSum    = 0
            rollingNcr = 1
            for i in xrange(p-1,k-2,-1):
                index      = p - i
                tempSum   += inv[i] * rollingNcr
                rollingNcr = (rollingNcr * (k + index - 1) * inv[index]) % p
            sumz += tempSum % p
            print p, tempSum % p
    return sumz
Beispiel #7
0
def D(a, b, k):
    sumz = 0
    for p in xrange(a, a + b):
        if m_r(p):
            inv = [0] + [multInverse(x, p) for x in xrange(1, p)]
            tempSum = 0
            rollingNcr = 1
            for i in xrange(p - 1, k - 2, -1):
                index = p - i
                tempSum += inv[i] * rollingNcr
                rollingNcr = (rollingNcr * (k + index - 1) * inv[index]) % p
            sumz += tempSum % p
            print p, tempSum % p
    return sumz
Beispiel #8
0
import time
from primes import m_r
START = time.time()

num = 10**12
start_val = 2 * 10**9
end_val = 2 * 10**9 + 2000
power = 10**4
running_sum = 0

for p in xrange(start_val, end_val):
    # ignore non primes
    if m_r(p):
        nModp = num % p
        running_sum += (-1 * sum( [ (nModp + 1 - x) * pow(x, power, p) \
                          for x in xrange((num+1)%p, p+1) ])) % p
        print p, running_sum

print running_sum
print "Time Taken:", time.time() - START
"""
Congratulations, the answer you gave to problem 487 is correct.
You are the 358th person to have solved this problem.

Answer     : 106650212746
Time Taken : 16.3226361275

Quick summary on this problem.

The problem asks us to find:
  sum_{2*10^9 <= p <= 2*10^9, p prime} (
Beispiel #9
0
START               = time.time()
LIM                 = 10**12
validHammingNumbers = set()
validPrimes         = set()


for i in xrange(0,int(math.log(LIM, 2)) +1):
  for j in xrange(0,int(math.log(LIM / 2**i, 3)) + 1):
    for k in xrange(0,18):
      if 2**i * 3**j * 5**k > LIM:
        break
      validHammingNumbers.add(2**i * 3**j * 5**k)

# Figure out which primes p have the property totient(p) = hammingNumber
for hammingNumber in validHammingNumbers:
  if m_r(hammingNumber +1):
    validPrimes.add(hammingNumber +1)

validPrimes = validPrimes.difference(set([2,3,5])) # these are included in hamming numbers already
validPrimes = sorted(validPrimes)[::-1]

validHammingNumbers.remove(1) # unnecessary, and causes slowdown
validHammingNumbers = sorted(validHammingNumbers)[::-1]

# compute every single product of primes ignoring 2,3,5 which results in totient(product) = hammingNumber
newSet = set([1])
for prime in validPrimes:
  oldSet = newSet.union(set())
  for oldNumber in oldSet:
    if oldNumber * prime <= LIM:
      newSet.add(prime * oldNumber)
Beispiel #10
0
        s, t = extended_gcd(b, r)
        return (t, s - q * t)


ext_gcd = extended_gcd

#############################################################
##################### Getting 100,000 primes ################
#############################################################

i = 10**14
count = 0
prime_lst = []
while count < 10**5:
    i += 1
    if m_r(i):
        count += 1
        prime_lst.append(i)

print "Time Taken:", time.time() - start

#############################################################
##################  Finding the nth fibo num ################
#############################################################

pToTest = [3, 7, 13, 67, 107, 630803]  #Factorization of 1234567891011
fibo_lsts = []

for prime in pToTest:
    fib = [0, 1, 1, 2]
    while fib[-1] != 1 or fib[-2] != 0:
Beispiel #11
0
def get_primes(start, end):
    primes = []
    for i in xrange(start, end):
        if m_r(i):
            primes.append(i)
    return primes
Beispiel #12
0
import time
from primes import m_r
START = time.time()

num         = 10**12
start_val   = 2*10**9
end_val     = 2*10**9 + 2000
power       = 10**4
running_sum = 0

for p in xrange(start_val, end_val):
  # ignore non primes
  if m_r(p):
    nModp = num % p
    running_sum += (-1 * sum( [ (nModp + 1 - x) * pow(x, power, p) \
                      for x in xrange((num+1)%p, p+1) ])) % p
    print p, running_sum

print running_sum
print "Time Taken:", time.time() - START


"""
Congratulations, the answer you gave to problem 487 is correct.
You are the 358th person to have solved this problem.

Answer     : 106650212746
Time Taken : 16.3226361275

Quick summary on this problem.
Beispiel #13
0
        q, r = a/b, a%b 
        s, t = extended_gcd(b, r)
        return (t, s - q * t)
ext_gcd = extended_gcd


#############################################################
##################### Getting 100,000 primes ################
#############################################################

i = 10**14
count = 0
prime_lst = []
while count < 10**5:
    i +=1
    if m_r(i):
        count +=1
        prime_lst.append(i)

print "Time Taken:", time.time() - start

#############################################################
##################  Finding the nth fibo num ################
#############################################################

pToTest = [3,7,13,67,107,630803] #Factorization of 1234567891011
fibo_lsts = []

for prime in pToTest:
    fib = [0,1,1,2]
    while fib[-1] != 1 or fib[-2] != 0:
Beispiel #14
0
    pos = n - row_start
    if pos != 0:
        if row % 2 == 0:
            neighbors = [n - row + 2, n - row, n + row]
        else:
            neighbors = [n - row + 1, n + row - 1, n + row + 1]
    else:
        neighbors = [n + row, n + row + 1, n - row + 1, n - row + 2]
    return neighbors


sumz = 0
for p in pos:
    i = p * (p - 1) / 2 + 1
    while i < p * (p + 1) / 2 - 1:
        if m_r(i):
            neigh = neighbors(i, p)
            neigh_sum = sum([m_r(x) for x in neigh])
            if neigh_sum >= 2:
                sumz += i
            else:
                for num in neigh:
                    row = p - 1 if num < i else p + 1
                    if m_r(num):
                        neigh_sum = sum([m_r(x) for x in neighbors(num, row)])
                        if neigh_sum >= 2:
                            sumz += i
                            break
        i += 1
    print sumz
print sumz
Beispiel #15
0
import time, math
from primes import m_r, findNumLessThan
START = time.time()
SIZE = 10**11

RELEVANT_SIZE = SIZE / 21125  # 21125 = 5^3 x 13^2

oneMod4Primes = filter(lambda x: m_r(x), xrange(5, RELEVANT_SIZE + 1, 4))
threeMod4Primes = [2] + filter(lambda x: m_r(x), xrange(
    3, RELEVANT_SIZE + 1, 4))

large3Mod4PrimesIndex = findNumLessThan(threeMod4Primes, RELEVANT_SIZE**.5)
threeMod4Products = set([1] + threeMod4Primes[large3Mod4PrimesIndex + 1:])

for p in threeMod4Primes[large3Mod4PrimesIndex:0:-1] + [2]:
    for power in xrange(1, int(math.log(RELEVANT_SIZE, p) + 1)):
        threeMod4Products = threeMod4Products.union( \
          filter((lambda x: x < RELEVANT_SIZE), \
                 [ x*p**power for x in threeMod4Products]))

threeMod4Products = sorted(threeMod4Products)


def compute(power1, power2, power3=0):
    sumz = 0
    for prime1 in oneMod4Primes:
        if prime1**power1 * 5**power2 > SIZE:
            break
        for prime2 in oneMod4Primes:
            #print prime1, prime2, prime1**power1*prime2**power2
            if prime1 == prime2:
Beispiel #16
0
->
(x^2 - xy + y^2) | y^3

For now, assume:
  x^2 - xy + y^2 = y^3
Then:
  x = (y + y * sqrt(4y - 3)) / 2

"""

count = 0

for i in xrange(1, int(math.sqrt(LIM)), 2):
    for v in xrange(1, 100):
        y = v * (i**2 + 3) / 4
        x = y * (1 + i) / (2 * v)
        if x < y:
            continue
        if (x**4 - y**4) % (x**3 + y**3) != 0:
            # print x, y, (x**4 - y**4) % (x**3 + y**3), "ERROR"
            continue
        number = (x**4 - y**4) / (x**3 + y**3)
        if number > LIM:
            break
        if m_r(number):
            print number, x, y, v, x**4 - y**4, x**3 + y**3
            count += number

print "answer:", count
print "Time taken:", time.time() - START
Beispiel #17
0
import time
from primes import get_primes, divisors, m_r
START = time.time()
SIZE = 10**6 * 5
LIM = 10**5
primes = get_primes(SIZE)

div308 = divisors(308)
results = []

for p in primes:
    if len(results) > LIM: break
    if not any([m_r(div * p + 1) for div in div308]):
        results.append(p)

print results[LIM - 2] * 308, len(results)

for repetition in xrange(10):

    resultSet = set(results)
    for index, a in enumerate(results):
        if a * results[0] > results[LIM]: break

        for bIndex in xrange(index + 1):
            b = results[bIndex]
            p = a * b

            if a * b > results[LIM]: break
            if not any([m_r(div * p + 1) for div in div308]):
                if len(filter(lambda x: x not in resultSet,
                              divisors(p)[1:-1])) == 0:
Beispiel #18
0
from primes import m_r, primes
import time
START = time.time()

SIZE           = 10**6
MAX_PRIMES_LIM = 600 # sum of [2,3,5,7, ...] first 546 primes = 997,661

maxNumPrimes = 0
for startingPrime in xrange(0, MAX_PRIMES_LIM):
  if sum(primes[startingPrime:startingPrime + maxNumPrimes]) > SIZE:
    break

  lst  = primes[:MAX_PRIMES_LIM]
  k    = startingPrime + 1
  while lst[k-1] < SIZE:
    lst[k] += lst[k-1]
    k      += 1

  for i in xrange(k-1,0,-1):
    if m_r(lst[i]):
      if maxNumPrimes < i:
        print lst[i], i
        maxNumPrimes = i
      break
print "Time taken:",time.time() -START
Beispiel #19
0
primeSets    = [set() for i in xrange(6)]
baseDict     = {1 : 0, 2 : 0, 3 : 0, 5 : 0, 7 : 0, 11 : 0, 13 : 0}
TOTIENT_VAL  = math.factorial(13)
INDEX        = 150000 -1

possiblePrimes   = set()
possibleTotients = set([1])

for prime in primeFactors.keys():
  newSet = set()
  for power in xrange(1, primeFactors[prime]+1):
    newSet.update(set([ prime**power * num for num in possibleTotients]))
  possibleTotients.update(newSet)

for num in possibleTotients:
  if m_r(num+1):
    possiblePrimes.add(num+1)

# Arrange products into sets based on their largest prime factor
for num in list(possiblePrimes):
  for pIndex in xrange(len(primes)):
    if (num - 1) % primes[pIndex] == 0:
      primeSets[pIndex].add(num)
      break

def factorAndAddToDict(num, valueDict):
  factors = factor(num)
  for num in factors:
    valueDict[num] += 1

def checkPrimePowers(valDict, func):
Beispiel #20
0
    row_start = row*(row-1)/2 + 1
    pos = n - row_start
    if pos != 0:
        if row % 2 == 0:
            neighbors = [ n-row+2,n-row,n+row]
        else:
            neighbors = [n-row+1,n+row-1,n+row+1]
    else:
        neighbors = [n+row,n+row+1,n-row+1,n-row+2]
    return neighbors    

sumz = 0
for p in pos:
    i = p*(p-1)/2+1
    while i < p*(p+1)/2 - 1:
        if m_r(i):
            neigh = neighbors(i,p)
            neigh_sum = sum([m_r(x) for x in neigh])
            if neigh_sum >= 2:
                sumz += i
            else:
                for num in neigh:
                    row = p-1 if num < i else p+1
                    if m_r(num):
                        neigh_sum = sum([m_r(x) for x in neighbors(num,row)]) 
                        if neigh_sum >= 2:
                            sumz +=i
                            break
        i+=1
    print sumz
print sumz
Beispiel #21
0
primeSets    = [set() for i in xrange(6)]
baseDict     = {1 : 0, 2 : 0, 3 : 0, 5 : 0, 7 : 0, 11 : 0, 13 : 0}
TOTIENT_VAL  = math.factorial(13)
INDEX        = 150000 -1

possiblePrimes   = set()
possibleTotients = set([1])

for prime in primeFactors.keys():
  newSet = set()
  for power in xrange(1, primeFactors[prime]+1):
    newSet.update(set([ prime**power * num for num in possibleTotients]))
  possibleTotients.update(newSet)

for num in possibleTotients:
  if m_r(num+1):
    possiblePrimes.add(num+1)

# Arrange products into sets based on their largest prime factor
for num in list(possiblePrimes):
  for pIndex in xrange(len(primes)):
    if (num - 1) % primes[pIndex] == 0:
      primeSets[pIndex].add(num)
      break

def factorAndAddToDict(num, valueDict):
  factors = factor(num)
  for num in factors:
    valueDict[num] += 1

def checkPrimePowers(valDict, func):
Beispiel #22
0
import time, math
from primes import m_r, findNumLessThan
START = time.time()
SIZE  = 10**11

RELEVANT_SIZE = SIZE / 21125 # 21125 = 5^3 x 13^2

oneMod4Primes   = filter(lambda x: m_r(x), xrange(5,RELEVANT_SIZE+1,4))
threeMod4Primes = [2] + filter(lambda x: m_r(x), xrange(3,RELEVANT_SIZE+1,4))

large3Mod4PrimesIndex = findNumLessThan(threeMod4Primes, RELEVANT_SIZE**.5)
threeMod4Products     = set([1] + threeMod4Primes[large3Mod4PrimesIndex+1:])

for p in threeMod4Primes[large3Mod4PrimesIndex:0:-1] + [2]:
  for power in xrange(1,int(math.log(RELEVANT_SIZE,p)+1)):
    threeMod4Products = threeMod4Products.union( \
      filter((lambda x: x < RELEVANT_SIZE), \
             [ x*p**power for x in threeMod4Products]))

threeMod4Products = sorted(threeMod4Products)

def compute(power1,power2, power3=0):
  sumz = 0
  for prime1 in oneMod4Primes:
    if prime1**power1 * 5**power2 > SIZE:
      break
    for prime2 in oneMod4Primes:
      #print prime1, prime2, prime1**power1*prime2**power2
      if prime1 == prime2:
        continue
      if prime1**power1 * prime2**power2 > SIZE:
Beispiel #23
0
import time
START = time.time()
from primes import m_r

rings = [1] + [3 * x * (x - 1) + 2 for x in xrange(1, 100000)]

sol = [0, 1]
for i in xrange(2, len(rings) - 2):
    val = m_r(rings[i+1] - rings[i] +1) + \
        m_r(rings[i+2] -rings[i] -1) + \
        m_r(rings[i+1] - rings[i] -1)
    if val == 3:
        sol += [rings[i]]

for i in xrange(2, len(rings) - 2):
    a = rings[i] - 1
    val = m_r(a - rings[i-1]) + \
        m_r(a -rings[i-2]) + \
        m_r(rings[i+1] - 2 - a)
    if val == 3:
        sol += [a]

sol.sort()
print len(sol)
if len(sol) > 2000:
    print sol[1999]
print sol[:10]
print "Time Taken:", time.time() - START
"""
13:57 ~/Desktop/python_projects/proj_euler $ python prob128.py 
2635
Beispiel #24
0
->
(x^2 - xy + y^2) | y^3

For now, assume:
  x^2 - xy + y^2 = y^3
Then:
  x = (y + y * sqrt(4y - 3)) / 2

"""

count = 0

for i in xrange(1, int(math.sqrt(LIM)), 2):
  for v in xrange(1,100):
    y = v * (i**2 + 3 ) / 4
    x = y * (1 + i) / (2*v)
    if x < y:
      continue
    if (x**4 - y**4) % (x**3 + y**3) != 0:
      # print x, y, (x**4 - y**4) % (x**3 + y**3), "ERROR"
      continue
    number = (x**4 - y**4) / (x**3 + y**3)
    if number > LIM:
      break
    if m_r(number):
      print number, x,y, v, x**4 - y**4, x**3 + y**3
      count += number

print "answer:", count
print "Time taken:", time.time() - START
Beispiel #25
0
    old_set = new_set
    new_set = set()

for item in old_set:
    admiss_set.add(item)
admiss_set.remove(1)
print len(admiss_set), "is how many admissible numbers we need to deal with,"
print "Time Taken:", time.time() - start

######################################### Above this is finding admissible numbers

fort_num = set() # the pseudo-fortunate numbers

for num in admiss_set:
    n = num+2
    while not m_r(n):
        n += 1
    fort_num.add(n-num)

print sum(fort_num), "is our final answer"
print "Time Taken:", time.time() - start

"""
Congratulations, the answer you gave to problem 293 is correct.

You are the 1292nd person to have solved this problem.

22:17 ~/Desktop/python_projects/proj_euler $ python prob293.py 
6656 is how many admissible numbers we need to deal with,
Time Taken: 0.0592079162598
2209 is our final answer
Beispiel #26
0
    old_set = new_set
    new_set = set()

for item in old_set:
    admiss_set.add(item)
admiss_set.remove(1)
print len(admiss_set), "is how many admissible numbers we need to deal with,"
print "Time Taken:", time.time() - start

######################################### Above this is finding admissible numbers

fort_num = set()  # the pseudo-fortunate numbers

for num in admiss_set:
    n = num + 2
    while not m_r(n):
        n += 1
    fort_num.add(n - num)

print sum(fort_num), "is our final answer"
print "Time Taken:", time.time() - start
"""
Congratulations, the answer you gave to problem 293 is correct.

You are the 1292nd person to have solved this problem.

22:17 ~/Desktop/python_projects/proj_euler $ python prob293.py 
6656 is how many admissible numbers we need to deal with,
Time Taken: 0.0592079162598
2209 is our final answer
Time Taken: 0.359772920609
Beispiel #27
0
import time, math
from primes import factor, m_r

START = time.time()
SIZE  = 10**11
LIM   = SIZE / 12101
MOD   = 2017
vals  = dict()

for n in sorted(range(1722, int(SIZE**(1/2.)), MOD) + range(294, int(SIZE**(1/2.)), MOD)):
  if n**2 > SIZE:
    break
  if m_r(n):
    vals[n] = 2

for n in sorted(range(1788, int(SIZE**(1/3.)), MOD) + range(229, int(SIZE**(1/3.)), MOD)):
  if n**3 > SIZE:
    break
  if m_r(n):
    vals[n] = 3

ansNum = 0
for n in xrange(MOD-1, SIZE, MOD):
  if m_r(n):
    if n > LIM:
      # don't bother storing large numbers, they won't run into the duplicate problem
      for j in xrange(1,SIZE/n+1):
        ansNum += j * n
    else:
      vals[n] = 1
print "Time Taken:", time.time() - START
Beispiel #28
0
def get_primes(start,end):
  primes = []
  for i in xrange(start,end):
    if m_r(i):
      primes.append(i)
  return primes