#================================================= if opts.verbose: print "\n----------------------------------\n" print "building hPrior" if opts.time: to = time.time() pareto_a=config.getfloat("hPrior","pareto_a") n_gaus_per_dec=config.getfloat("hPrior","n_gaus_per_dec") log10_min=np.log10(config.getfloat("hPrior","min")) log10_max=np.log10(config.getfloat("hPrior","max")) n_gaus = max(1, int(round((log10_max-log10_min)*n_gaus_per_dec,0))) variances=np.logspace(log10_min, log10_max, n_gaus)**2 pareto_means, pareto_covariance, pareto_amps = priors.pareto(pareto_a, analysis_n_freqs, n_pol, variances) hprior = priors.hPrior(analysis_freqs, pareto_means, pareto_covariance, amplitudes=pareto_amps, n_gaus=n_gaus, n_pol=n_pol) if opts.time: print "\t", time.time()-to #================================================= ### build posterior_obj #================================================= if opts.verbose: print "\n----------------------------------\n" print "building posterior" posterior = posteriors.Posterior(network=network, hPrior=hprior, angPrior=angprior, seglen=seglen)
pickle.dump(waveform_args, file_obj) pickle.dump(theta_inj, file_obj) pickle.dump(phi_inj, file_obj) pickle.dump(psi_inj, file_obj) pickle.dump(hrss_inj, file_obj) pickle.dump(snrs_inj, file_obj) file_obj.close() #================================================= # PRIORS #================================================= import priors print "hPrior" to=time.time() pareto_means, pareto_covariance, pareto_amps = priors.pareto(a, n_freqs, n_pol, variances) hprior_obj = priors.hPrior(freqs, pareto_means, pareto_covariance, amplitudes=pareto_amps, n_gaus=n_gaus, n_pol=n_pol, byhand=True) print "\t", time.time()-to print "angPrior" to=time.time() angprior_obj = priors.angPrior(nside_exp, prior_type=prior_type) print "\t", time.time()-to #================================================= # POSTERIORS #================================================= import posteriors print "posterior.__init__()" to=time.time()