Beispiel #1
0
def test():
    """
    UTILITY/TEST FUNCTION
    """
    print("randomly generating/recovering 5 prngs")
    seeds = [random.randint(1, 104729) for i in range(0, 5)]
    print("seeds: ", seeds)
    prngs = [prng(seed=s) for s in seeds]
    curstates = [get_state(p) for p in prngs]
    print("recovered states: ", curstates)
    synced_prngs = [prng(seed=s) for s in curstates]
    good_output = [p.get_num() for p in prngs]
    synced_output = [p.get_num() for p in synced_prngs]
    print("good output: ", good_output)
    print("test output: ", synced_output)
    if good_output == synced_output:
        return True
    else:
        return False
Beispiel #2
0
def test():
    """
    UTILITY/TEST FUNCTION
    """
    print("randomly generating/recovering 5 prngs")
    seeds = [random.randint(1,104729) for i in range(0,5)]
    print("seeds: ",seeds)
    prngs = [prng(seed=s) for s in seeds]
    curstates = [get_state(p) for p in prngs]
    print("recovered states: ",curstates)
    synced_prngs = [prng(seed=s) for s in curstates]
    good_output = [p.get_num() for p in prngs]
    synced_output = [p.get_num() for p in synced_prngs]
    print("good output: ",good_output)
    print("test output: ",synced_output)
    if good_output == synced_output:
        return True
    else:
        return False
Beispiel #3
0
    def __init__(self, output):
        """
        given the initial output,
        init out guesser so we can guess
        all remaining outputs

        output: some output from the prng_1 prng
        """
        F = FiniteField(104729,1) #use the same finite field at the prng
        P = F(7) #same parameters
        Q = F(2)
        PQ_inverse = (P*Q).inverse() #the trick! we have multiplicative inverses!
        T = F(output)
        oldstate = T*PQ_inverse
        curstate = oldstate*P*P 
        self.p = prng(seed=curstate.n)
Beispiel #4
0
    def __init__(self, output):
        """
        given the initial output,
        init out guesser so we can guess
        all remaining outputs

        output: some output from the prng_1 prng
        """
        F = FiniteField(104729, 1)  #use the same finite field at the prng
        P = F(7)  #same parameters
        Q = F(2)
        PQ_inverse = (
            P * Q).inverse()  #the trick! we have multiplicative inverses!
        T = F(output)
        oldstate = T * PQ_inverse
        curstate = oldstate * P * P
        self.p = prng(seed=curstate.n)