Beispiel #1
0
def get_kernel(kernel_name, input_shape):
    """Return a kernel for a given name."""
    if kernel_name == "white_noise":
        kernel = kernels.WhiteNoise(input_shape=input_shape)
    elif kernel_name == "linear":
        kernel = kernels.Linear(input_shape=input_shape)
    elif kernel_name == "polynomial":
        kernel = kernels.Polynomial(input_shape=input_shape)
    elif kernel_name == "exp_quad":
        kernel = kernels.ExpQuad(input_shape=input_shape)
    elif kernel_name == "rat_quad":
        kernel = kernels.RatQuad(input_shape=input_shape)
    elif kernel_name == "matern12":
        kernel = kernels.Matern(input_shape=input_shape, nu=0.5)
    elif kernel_name == "matern32":
        kernel = kernels.Matern(input_shape=input_shape, nu=1.5)
    elif kernel_name == "matern52":
        kernel = kernels.Matern(input_shape=input_shape, nu=2.5)
    elif kernel_name == "matern72":
        kernel = kernels.Matern(input_shape=input_shape, nu=3.5)
    else:
        raise ValueError(f"Kernel name '{kernel_name}' not recognized.")

    return kernel
Beispiel #2
0
def test_nu_large_recovers_rbf_kernel(x0: np.ndarray, x1: np.ndarray,
                                      input_shape: ShapeType):
    """Test whether a Matern kernel with nu large is close to an RBF kernel."""
    lengthscale = 1.25
    rbf = kernels.ExpQuad(input_shape=input_shape, lengthscale=lengthscale)
    matern = kernels.Matern(input_shape=input_shape,
                            lengthscale=lengthscale,
                            nu=15)

    np.testing.assert_allclose(
        rbf.matrix(x0, x1),
        matern.matrix(x0, x1),
        err_msg=
        "RBF and Matern kernel are not sufficiently close for nu->infty.",
        rtol=0.05,
        atol=0.01,
    )
def test_kernel_matrix(input_dim, nu):
    """Check that the product Matérn kernel matrix is an elementwise product of 1D
    Matérn kernel matrices."""
    lengthscale = 1.25
    matern = kernels.Matern(input_shape=(1,), lengthscale=lengthscale, nu=nu)
    product_matern = kernels.ProductMatern(
        input_shape=(input_dim,), lengthscales=lengthscale, nus=nu
    )
    rng = np.random.default_rng(42)
    num_xs = 15
    xs = rng.random(size=(num_xs, input_dim))
    kernel_matrix1 = product_matern.matrix(xs)
    kernel_matrix2 = np.ones(shape=(num_xs, num_xs))
    for dim in range(input_dim):
        kernel_matrix2 *= matern.matrix(_utils.as_colvec(xs[:, dim]))
    np.testing.assert_allclose(
        kernel_matrix1,
        kernel_matrix2,
    )
Beispiel #4
0
def test_nonpositive_nu_raises_exception(nu):
    """Check whether a non-positive nu parameter raises a ValueError."""
    with pytest.raises(ValueError):
        kernels.Matern(input_shape=(), nu=nu)
Beispiel #5
0
    ],
    name="cov",
)
def fixture_cov(request, input_dim: int) -> kernels.Kernel:
    """Covariance function."""
    return request.param[0](**request.param[1], input_dim=input_dim)


@pytest.fixture(
    params=[
        pytest.param(randprocdef, id=randprocdef[0]) for randprocdef in [
            (
                "gp",
                randprocs.GaussianProcess(
                    mean=lambda x: np.zeros(x.shape[0]),
                    cov=kernels.Matern(input_dim=1),
                ),
            ),
        ]
    ],
    name="random_process",
)
def fixture_random_process(request) -> randprocs.RandomProcess:
    """Random process."""
    return request.param[1]


@pytest.fixture(name="gaussian_process")
def fixture_gaussian_process(mean, cov) -> randprocs.GaussianProcess:
    """Gaussian process."""
    return randprocs.GaussianProcess(mean=mean, cov=cov)
Beispiel #6
0
    name="cov",
)
def fixture_cov(request, input_dim: int) -> kernels.Kernel:
    """Covariance function."""
    return request.param[0](**request.param[1], input_shape=(input_dim,))


@pytest.fixture(
    params=[
        pytest.param(randprocdef, id=randprocdef[0])
        for randprocdef in [
            (
                "gp",
                randprocs.GaussianProcess(
                    mean=mean_fns.Zero(input_shape=(1,)),
                    cov=kernels.Matern(input_shape=(1,)),
                ),
            ),
        ]
    ],
    name="random_process",
)
def fixture_random_process(request) -> randprocs.RandomProcess:
    """Random process."""
    return request.param[1]


@pytest.fixture(name="gaussian_process")
def fixture_gaussian_process(mean, cov) -> randprocs.GaussianProcess:
    """Gaussian process."""
    return randprocs.GaussianProcess(mean=mean, cov=cov)