Beispiel #1
0
 def actualSetUp(self, add_errors=False, freqwin=1, block=False, dospectral=True, dopol=False):
     
     self.npixel = 256
     self.low = create_named_configuration('LOWBD2', rmax=750.0)
     self.freqwin = freqwin
     self.vis_list = list()
     self.ntimes = 5
     self.times = numpy.linspace(-3.0, +3.0, self.ntimes) * numpy.pi / 12.0
     self.frequency = numpy.linspace(0.8e8, 1.2e8, self.freqwin)
     if freqwin > 1:
         self.channelwidth = numpy.array(freqwin * [self.frequency[1] - self.frequency[0]])
     else:
         self.channelwidth = numpy.array([1e6])
     
     if dopol:
         self.vis_pol = PolarisationFrame('linear')
         self.image_pol = PolarisationFrame('stokesIQUV')
         f = numpy.array([100.0, 20.0, -10.0, 1.0])
     else:
         self.vis_pol = PolarisationFrame('stokesI')
         self.image_pol = PolarisationFrame('stokesI')
         f = numpy.array([100.0])
     
     if dospectral:
         flux = numpy.array([f * numpy.power(freq / 1e8, -0.7) for freq in self.frequency])
     else:
         flux = numpy.array([f])
     
     self.phasecentre = SkyCoord(ra=+180.0 * u.deg, dec=-60.0 * u.deg, frame='icrs', equinox='J2000')
     self.vis = ingest_unittest_visibility(self.low, self.frequency, self.channelwidth, self.times,
                                           self.vis_pol, self.phasecentre, block=block)
     
     self.model = create_unittest_model(self.vis, self.image_pol, npixel=self.npixel)
Beispiel #2
0
 def actualSetUp(self, freqwin=1, block=False, dospectral=True, dopol=False, zerow=False):
     
     self.npixel = 512
     self.low = create_named_configuration('LOWBD2', rmax=750.0)
     self.freqwin = freqwin
     self.vis = list()
     self.ntimes = 5
     self.times = numpy.linspace(-3.0, +3.0, self.ntimes) * numpy.pi / 12.0
     
     if freqwin > 1:
         self.frequency = numpy.linspace(0.8e8, 1.2e8, self.freqwin)
         self.channelwidth = numpy.array(freqwin * [self.frequency[1] - self.frequency[0]])
     else:
         self.frequency = numpy.array([1e8])
         self.channelwidth = numpy.array([1e6])
     
     if dopol:
         self.vis_pol = PolarisationFrame('linear')
         self.image_pol = PolarisationFrame('stokesIQUV')
         f = numpy.array([100.0, 20.0, -10.0, 1.0])
     else:
         self.vis_pol = PolarisationFrame('stokesI')
         self.image_pol = PolarisationFrame('stokesI')
         f = numpy.array([100.0])
     
     if dospectral:
         flux = numpy.array([f * numpy.power(freq / 1e8, -0.7) for freq in self.frequency])
     else:
         flux = numpy.array([f])
     
     self.phasecentre = SkyCoord(ra=+180.0 * u.deg, dec=-60.0 * u.deg, frame='icrs', equinox='J2000')
     self.vis = ingest_unittest_visibility(self.low,
                                           [self.frequency],
                                           [self.channelwidth],
                                           self.times,
                                           self.vis_pol,
                                           self.phasecentre, block=block,
                                           zerow=zerow)
     
     self.model = create_unittest_model(self.vis, self.image_pol, npixel=self.npixel)
     
     self.components = create_unittest_components(self.model, flux)
     
     self.model = insert_skycomponent(self.model, self.components)
     
     self.vis = predict_skycomponent_visibility(self.vis, self.components)
     
     # Calculate the model convolved with a Gaussian.
     
     self.cmodel = smooth_image(self.model)
     export_image_to_fits(self.model, '%s/test_imaging_model.fits' % self.dir)
     export_image_to_fits(self.cmodel, '%s/test_imaging_cmodel.fits' % self.dir)
Beispiel #3
0
 def actualSetUp(self, zerow=True):
     self.doplot = False
     self.npixel = 256
     self.cellsize = 0.0009
     self.low = create_named_configuration('LOWBD2', rmax=750.0)
     self.freqwin = 1
     self.vis_list = list()
     self.ntimes = 3
     self.times = numpy.linspace(-2.0, +2.0, self.ntimes) * numpy.pi / 12.0
     
     if self.freqwin == 1:
         self.frequency = numpy.array([1e8])
         self.channelwidth = numpy.array([4e7])
     else:
         self.frequency = numpy.linspace(0.8e8, 1.2e8, self.freqwin)
         self.channelwidth = numpy.array(self.freqwin * [self.frequency[1] - self.frequency[0]])
     
     self.vis_pol = PolarisationFrame('linear')
     self.image_pol = PolarisationFrame('stokesIQUV')
     
     f = numpy.array([100.0, 20.0, -10.0, 1.0])
     
     flux = numpy.array([f * numpy.power(freq / 1e8, -0.7) for freq in self.frequency])
     
     self.phasecentre = SkyCoord(ra=+180.0 * u.deg, dec=-60.0 * u.deg, frame='icrs', equinox='J2000')
     self.vis = ingest_unittest_visibility(self.low,
                                           self.frequency,
                                           self.channelwidth,
                                           self.times,
                                           self.vis_pol,
                                           self.phasecentre,
                                           block=False,
                                           zerow=zerow)
     
     self.model = create_unittest_model(self.vis, self.image_pol, cellsize=self.cellsize,
                                        npixel=self.npixel, nchan=self.freqwin)
     self.components = create_unittest_components(self.model, flux, applypb=False,
                                                  scale=0.5, single=False, symmetric=True)
     self.model = insert_skycomponent(self.model, self.components)
     self.vis = predict_skycomponent_visibility(self.vis, self.components)
     
     # Calculate the model convolved with a Gaussian.
     self.cmodel = smooth_image(self.model)
     if self.persist:
         export_image_to_fits(self.model, '%s/test_gridding_model.fits' % self.dir)
         export_image_to_fits(self.cmodel, '%s/test_gridding_cmodel.fits' % self.dir)
     pb = create_pb_generic(self.model, diameter=35.0, blockage=0.0)
     self.cmodel.data *= pb.data
     if self.persist:
         export_image_to_fits(self.cmodel, '%s/test_gridding_cmodel_pb.fits' % self.dir)
     self.peak = numpy.unravel_index(numpy.argmax(numpy.abs(self.cmodel.data)), self.cmodel.shape)