def backchain_to_goal_tree(rules, hypothesis): goal_tree = [hypothesis] for rule in rules: # take THEN part of a rule consequent = rule.consequent() for option in consequent: bindings = match(option, hypothesis) if bindings or option == hypothesis: # take IF part of a rule antecedent = rule.antecedent() if isinstance(antecedent, str): new_hypothesis = populate(antecedent, bindings) goal_tree.append(backchain_to_goal_tree(rules, new_hypothesis)) goal_tree.append(new_hypothesis) else: statements = [populate(ante_expr, bindings) for ante_expr in antecedent] new_goal_tree = [] for statement in statements: new_goal_tree.append(backchain_to_goal_tree(rules, statement)) # check the leaves of AND-OR tree and recursively backward chain on them. if isinstance(antecedent, AND): goal_tree.append(AND(new_goal_tree)) else: goal_tree.append(OR(new_goal_tree)) return simplify(OR(goal_tree))
def backchain_to_goal_tree(rules, hypothesis,myLeaf = []): count = 0 for i in range(len(rules)): bindings = (match(rules[i].consequent()[0],hypothesis)) if bindings is not None: print 'type of bindings',bindings andLeaf = AND() orLeaf = OR() for x in range(len(rules[i].antecedent())): print 'in antecedent.....',rules[i].antecedent()[x] node = populate((rules[i].antecedent()[x]),bindings) if type(rules[i].antecedent()) == AND: andLeaf.append(populate((rules[i].antecedent()[x]),bindings)) myLeaf.append(simplify(andLeaf)) print 'andLeaf', andLeaf if type(rules[i].antecedent()) == OR: orLeaf.append(populate((rules[i].antecedent()[x]),bindings)) myLeaf.append(simplify(orLeaf)) print 'orLeaf',orLeaf disnode = backchain_to_goal_tree(rules,node) else: print 'hypothesis' #myLeaf.append(hypothesis) return simplify(myLeaf)
def backchain_to_goal_tree(rules, hypothesis, myLeaf=[]): count = 0 for i in range(len(rules)): bindings = (match(rules[i].consequent()[0], hypothesis)) if bindings is not None: print 'type of bindings', bindings andLeaf = AND() orLeaf = OR() for x in range(len(rules[i].antecedent())): print 'in antecedent.....', rules[i].antecedent()[x] node = populate((rules[i].antecedent()[x]), bindings) if type(rules[i].antecedent()) == AND: andLeaf.append( populate((rules[i].antecedent()[x]), bindings)) myLeaf.append(simplify(andLeaf)) print 'andLeaf', andLeaf if type(rules[i].antecedent()) == OR: orLeaf.append( populate((rules[i].antecedent()[x]), bindings)) myLeaf.append(simplify(orLeaf)) print 'orLeaf', orLeaf disnode = backchain_to_goal_tree(rules, node) else: print 'hypothesis' #myLeaf.append(hypothesis) return simplify(myLeaf)
def backchain_to_goal_tree(rules, hypothesis): new_hyp_list = [] goaltree = [] for rule in rules: for word in rule.consequent(): if match(rule.consequent()[0], hypothesis) != None: new_hyp = populate(rule.antecedent(), match(rule.consequent()[0], hypothesis)) new_hyp_list += [new_hyp] goaltree += [hypothesis] for new_hyp in new_hyp_list: goaltree += [new_hyp] goaltree = OR(goaltree) if len(goaltree) != 0: for i in range(1, len(goaltree)): if isinstance(goaltree[i], (list, tuple)): for j in range(0, len(goaltree[i])): goaltree[i][j] = simplify( backchain_to_goal_tree(rules, goaltree[i][j])) else: goaltree[i] = simplify( backchain_to_goal_tree(rules, goaltree[i])) goaltree = simplify(goaltree) return goaltree
def backchain_to_goal_tree(rules, hypothesis): """ Takes a hypothesis (string) and a list of rules (list of IF objects), returning an AND/OR tree representing the backchain of possible statements we may need to test to determine if this hypothesis is reachable or not. This method should return an AND/OR tree, that is, an AND or OR object, whose constituents are the subgoals that need to be tested. The leaves of this tree should be strings (possibly with unbound variables), *not* AND or OR objects. Make sure to use simplify(...) to flatten trees where appropriate. """ toReturnTrees = [hypothesis] matches = False for rule in rules: for consequent in rule.consequent(): variables = match(consequent, hypothesis) if variables == None: continue matches = True # the thing you have to prove is true, # in order to prove your hypothesis is true antecedent = rule.antecedent( ) #populate(rule.antecedent(), variables) # the subtree you will return tree = None if isinstance(antecedent, str): tree = backchain_to_goal_tree(rules, populate(antecedent, variables)) elif isinstance(antecedent, AND): tree = AND([ backchain_to_goal_tree(rules, populate(clause, variables)) for clause in antecedent ]) elif isinstance(antecedent, OR): tree = OR([ backchain_to_goal_tree(rules, populate(clause, variables)) for clause in antecedent ]) tree = simplify(tree) toReturnTrees.append(tree) if not matches: return hypothesis return simplify(simplify(OR([toReturnTrees])))
def backchain_to_goal_tree(rules, hypothesis): tree = [hypothesis] for rule in rules: cons = rule.consequent() antec = rule.antecedent() #Busco "matches" isInConsequent = False for pattern in cons: dictMatch = match(pattern,hypothesis) if(dictMatch != None): isInConsequent = True #print "Match!" #print rule break if(isInConsequent): listaTemp = [] if(not isinstance(antec,list)): #Es una expresion simple expP = populate(antec, dictMatch) expP = backchain_to_goal_tree(rules, expP) tree.append(expP) else: for exp in antec: expP = populate(exp,dictMatch) expP = backchain_to_goal_tree(rules,expP) listaTemp.append(expP) if(isinstance(antec,AND)): tree.append(AND(listaTemp)) elif(isinstance(antec,OR)): tree.append(OR(listaTemp)) return simplify(OR(tree))
def backchain_to_goal_tree(rules, hypothesis): goal_tree = OR(hypothesis) for rule in rules: consequence_pattern = rule.consequent()[0] bindings = match(consequence_pattern,hypothesis) if bindings == None: #print 'no rule was found' continue else: if isinstance(rule.antecedent(),AND): subtree = AND() else: subtree = OR() if isinstance(rule.antecedent(),(OR,AND)): for antecedent in rule.antecedent(): new_hypo = populate(antecedent,bindings) subtree.append(backchain_to_goal_tree(rules,new_hypo)) goal_tree.append(subtree) else: new_hypo = populate(rule.antecedent(),bindings) subtree.append(backchain_to_goal_tree(rules,new_hypo)) goal_tree.append(subtree) return simplify(goal_tree)
def backchain_to_goal_tree(rules, hypothesis): # print 'START backchain_to_goal_tree', hypothesis goal_tree = OR() matching_rules = find_matching_rules(rules, hypothesis) #print "matching rules", matching_rules if len(matching_rules) > 0: goal_tree.append(hypothesis) for rule in matching_rules: consequent = rule.consequent() antecedent = rule.antecedent() for c in consequent: bindings = match(c, hypothesis) if bindings != None: #print "consequent:", c #print "antecedent:", antecedent #print "bindings:", bindings if isinstance(antecedent, (OR, AND)): for i in xrange(len(antecedent)): new_hypothesis = populate(antecedent[i], bindings) #print "new hypothesis", new_hypothesis antecedent[i] = backchain_to_goal_tree( rules, new_hypothesis) goal_tree.append(antecedent) else: new_hypothesis = populate(antecedent, bindings) goal_tree.append( backchain_to_goal_tree(rules, new_hypothesis)) goal_tree = simplify(goal_tree) else: goal_tree = hypothesis return goal_tree
def backchain_to_goal_tree(rules, hypothesis): """ LHG Code from 6.034, modified for the ADE system. Takes a hypothesis (string) and a list of rules (list of IF objects), returning an AND/OR tree representing the backchain of possible statements we may need to test to determine if this hypothesis is reachable or not. This method should return an AND/OR tree, that is, an AND or OR object, whose constituents are the subgoals that need to be tested. The leaves of this tree should be strings (possibly with unbound variables), *not* AND or OR objects. Make sure to use simplify(...) to flatten trees where appropriate. """ top_level = [hypothesis] for rule in rules: matching = match(rule.consequent(), hypothesis) if matching is not None: tree = [] next = populate(rule.antecedent(), matching) ant_stuff = type(rule.antecedent()) if ant_stuff is str: # leaf tree.append(backchain_to_goal_tree(rules, next)) else: for hyp in next: tree.append(backchain_to_goal_tree(rules, hyp)) if ant_stuff == OR: top_level.append(OR(tree)) else: top_level.append(AND(tree)) return simplify(OR(top_level))
def backchain_to_goal_tree(rules, hypothesis): anyMatches = False results = OR(hypothesis) for rule in rules: for statement in rule.consequent(): matchOutput = match(statement, hypothesis) if matchOutput !=None: anyMatches = True populatedAnt = populate(rule.antecedent(), matchOutput) #populate antecedent with vocab if isinstance(populatedAnt,list): ands = AND() ors = OR() for statement in populatedAnt: #populated Ant is and / or if isinstance(populatedAnt,AND): ands.append(backchain_to_goal_tree(rules,statement)) elif isinstance(populatedAnt,OR): ors.append(backchain_to_goal_tree(rules,statement)) if len(ands)!=0: results.append(ands) elif len(ors)!=0: results.append(ors) else: results.append(backchain_to_goal_tree(rules,populatedAnt)) if anyMatches == False: results.append(OR(hypothesis)) return simplify(results)
def backchain_to_goal_tree(rules, hypothesis): goal_tree = OR(hypothesis) for rule in rules: consequent = rule.consequent()[0] matching = match(consequent, hypothesis) if matching or matching == {}: if isinstance(rule.antecedent(), AND): leaf_tree = AND() for antecedent in rule.antecedent(): if populate(antecedent, matching): leaf_tree.append( backchain_to_goal_tree( rules, populate(antecedent, matching))) goal_tree.append(leaf_tree) else: leaf_tree.append( backchain_to_goal_tree(rules, antecedent)) elif isinstance(rule.antecedent(), OR): leaf_tree = OR() for antecedent in rule.antecedent(): if populate(antecedent, matching): leaf_tree.append( backchain_to_goal_tree( rules, populate(antecedent, matching))) goal_tree.append(leaf_tree) else: leaf_tree.append( backchain_to_goal_tree(rules, antecedent)) else: goal_tree.append( backchain_to_goal_tree( rules, populate(rule.antecedent(), matching))) return simplify(goal_tree)
def backchain_to_goal_tree(rules, hypothesis): goal_tree = OR() goal_tree.append(hypothesis) # The hypothesis is the ultimate CSF if not rules: return list(goal_tree) # Bad base test? Not sure why the need to cast back to list for rule in rules: consequent = rule.consequent()[0] # should handle multiple? bindings = match(consequent, hypothesis) if bindings or bindings == {}: antecedent = rule.antecedent() if isinstance(antecedent, AND): branch = AND() for condition in antecedent: cond = populate(condition, bindings) branch.append(backchain_to_goal_tree(rules, cond)) goal_tree.append(branch) elif isinstance(antecedent, OR): branch = OR() for condition in antecedent: cond = populate(condition, bindings) branch.append(backchain_to_goal_tree(rules, cond)) goal_tree.append(branch) else: # leaf leaf = populate(antecedent, bindings) goal_tree.append(leaf) goal_tree.append(backchain_to_goal_tree(rules, leaf)) # new leaf may match older consequent, need to check again return simplify(goal_tree)
def backchain_to_goal_tree(rules, hypothesis): hows = [] for rule in rules: if isinstance(rule.consequent(), basestring): cons = [rule.consequent()] else: cons = rule.consequent() for c in rule.consequent(): m = match(c, hypothesis) if m is not None: instantiated_candidate = populate(c, m) hows.append(instantiated_candidate) antecedents_hows = [] if isinstance(rule.antecedent(), basestring): ants = [rule.antecedent()] else: ants = rule.antecedent() for ant in ants: p_ant = populate(ant, m) ant_hows = backchain_to_goal_tree(rules, p_ant) antecedents_hows.append(ant_hows) if isinstance(rule.antecedent(), basestring) or isinstance(rule.antecedent(), OR) : for ant_hows in antecedents_hows: hows.append(ant_hows) elif isinstance(rule.antecedent(), AND): hows.append(AND(*antecedents_hows)) else: raise ValueError, "something is wront with this antecedent: %s" % rule.antecedent() if not hows: return hypothesis else: return simplify(OR(hows))
def backchain_to_goal_tree(rules, hypothesis): result = OR(hypothesis) for rule in rules: b = [] hype = [] for con in rule.consequent(): if match(con, hypothesis) is not None: b.append(match(con, hypothesis)) for i in b: if i is not None and isinstance(rule.antecedent(), (AND, OR)): for j in rule.antecedent(): if populate(j, i) is not None: hype.append(populate(j, i)) elif i is not None: if populate(rule.antecedent(), i) is not None: hype.append(populate(rule.antecedent(), i)) if len(hype) > 0: if isinstance(rule.antecedent(), AND): result.append(AND()) for h in hype: result[-1].append(backchain_to_goal_tree(rules, h)) elif isinstance(rule.antecedent(), OR): result.append(OR()) for h in hype: result[-1].append(backchain_to_goal_tree(rules, h)) else: for h in hype: result.append(backchain_to_goal_tree(rules, h)) result=simplify(result) return result
def backchain_to_goal_tree(rules, hypothesis): """ Takes a hypothesis (string) and a list of rules (list of IF objects), returning an AND/OR tree representing the backchain of possible statements we may need to test to determine if this hypothesis is reachable or not. This method should return an AND/OR tree, that is, an AND or OR object, whose constituents are the subgoals that need to be tested. The leaves of this tree should be strings (possibly with unbound variables), *not* AND or OR objects. Make sure to use simplify(...) to flatten trees where appropriate. """ #creating the results of our hypothesis results = [hypothesis] #looping through all the rules (necessary for each new hypothesis under recursion) for rule in rules: #taking the binder variable binder = match(rule.consequent(), hypothesis) #seeing if there is actually a matching statement if binder or rule.consequent() == hypothesis: #collecting all the antecedents to a rule antecedents = rule.antecedent() #special case if there is only 1 antecedent if isinstance(antecedents, str): #resetting our hypothesis so we can recursively go #through the one hypothesis hypothesis = populate(antecedents, binder) #have to append the hypothesis itself results.append(hypothesis) #recursively go through rules again with new hypothesis results.append(backchain_to_goal_tree(rules, hypothesis)) else: #if the antecedent has more AND/OR statements (more depth) hypotheses = [ populate(antecedent, binder) for antecedent in antecedents ] #recursive results for each antecent(which became a new #hypothesis) sub_results = [ backchain_to_goal_tree(rules, hypothesis) for hypothesis in hypotheses ] #binding the sub_results correctly based on how the #antecedents were stored if isinstance(antecedents, AND): results.append(AND(sub_results)) elif isinstance(antecedents, OR): results.append(OR(sub_results)) #returning simplified version as we go return simplify(OR(results))
def backchain_to_goal_tree(rules, hypothesis): results = [hypothesis] for rule in rules: consequent = rule.consequent() for expr in consequent: bindings = match(expr, hypothesis) if bindings or expr == hypothesis: antecedent = rule.antecedent() if isinstance(antecedent, str): new_hypothesis = populate(expr, bindings) results.append( backchain_to_goal_tree(rules, new_hypothesis)) results.append(new_hypothesis) else: statements = [ populate(expr, bindings) for ante_expr in antecedent ] new_results = [] for statement in statements: new_results.append( backchain_to_goal_tree(rules, statement)) results.append(create_statement(new_results, antecedent)) return simplify(results)
def backchain_to_goal_tree(rules, hypothesis): ret = hypothesis for rule in rules: consequent = rule.consequent() for conse in consequent: bindings = match(conse, hypothesis) if bindings != None: antecedent = rule.antecedent() if is_leaf_condition(antecedent): condition = antecedent.__class__ tmp = [] for ante in antecedent: new_hypothesis = populate(ante, bindings) ans = backchain_to_goal_tree(rules, new_hypothesis) tmp.append(ans) ret = OR(ret, condition(tmp)) else: new_hypothesis = populate(antecedent, bindings) tmp = backchain_to_goal_tree(rules, new_hypothesis) ret = OR(ret, tmp) return simplify(ret)
def backchain_to_goal_tree(rules, hypothesis): tree=OR(hypothesis) #print "hypothesis: "+str(hypothesis) matches=False for rule in rules: #print "rule: "+str(rule) cons=rule.consequent() ant=rule.antecedent() #print "cons: "+str(cons) for c in cons: #print "c:"+str(c) if match(c,hypothesis)!=None: matches=True if isinstance(ant, AND): subtree=AND() for a in ant: subtree.append(backchain_to_goal_tree(rules,populate(a, match(c,hypothesis)))) elif isinstance(ant, OR): subtree=OR() for a in ant: subtree.append(backchain_to_goal_tree(rules,populate(a,match(c,hypothesis)))) else: subtree=backchain_to_goal_tree(rules, populate(ant,match(c,hypothesis))) tree.append(subtree) if not(match): tree.append(hypothesis) return simplify(tree)
def backchain_to_goal_tree(rules, hypothesis): length = len(rules) if length == 0: return hypothesis tree = OR() for element in rules: con = element.consequent() mat = match(con[0], hypothesis) if mat is not None and len(mat) >= 0: antec = element.antecedent() if isinstance(antec, list): sub = AND() if isinstance(antec, OR): sub = OR() for x in antec: new_tree = backchain_to_goal_tree(rules, populate(x, mat)) sub.append(new_tree) tree.append(sub) else: new_tree = backchain_to_goal_tree(rules, populate(antec, mat)) tree.append(AND(new_tree)) else: tree.append(hypothesis) new = simplify(tree) return new
def backchain_to_goal_tree(rules, hypothesis): # for rule in rules: # print rule.antecedent() # print rule.consequent() if not rules: return hypothesis return simplify(rule_match_goal_tree(rules, hypothesis))
def backchain_to_goal_tree(rules, hypothesis): """ Takes a hypothesis (string) and a list of rules (list of IF objects), returning an AND/OR tree representing the backchain of possible statements we may need to test to determine if this hypothesis is reachable or not. This method should return an AND/OR tree, that is, an AND or OR object, whose constituents are the subgoals that need to be tested. The leaves of this tree should be strings (possibly with unbound variables), *not* AND or OR objects. Make sure to use simplify(...) to flatten trees where appropriate. """ matched = list([hypothesis]) for rule in rules: bound_conseq = match(rule.consequent(), hypothesis) if bound_conseq is not None: new_antes = list() if isinstance(rule.antecedent(), str): bound_ante = populate(rule.antecedent(), bound_conseq) matched.append(bound_ante) matched.append(backchain_to_goal_tree(rules, bound_ante)) for ant in rule.antecedent(): new_antes.append( backchain_to_goal_tree(rules, populate(ant, bound_conseq))) if isinstance(rule.antecedent(), AND): matched.append(AND(new_antes)) if isinstance(rule.antecedent(), OR): matched.append(OR(new_antes)) return simplify(OR(matched))
def backchain_to_goal_tree(rules, hypothesis): hypothesis = OR(hypothesis) for rule in rules: var_list = match( rule.consequent()[0], hypothesis[0] ) #assume that rule.consequent() and hypothesis have exactly one string if var_list == None: continue else: if isinstance(rule.antecedent(), basestring): appendage = [ backchain_to_goal_tree( rules, populate(rule.antecedent(), var_list)) ] else: appendage = [ backchain_to_goal_tree(rules, populate(data, var_list)) for data in rule.antecedent() ] if isinstance(rule.antecedent(), AND): appendage = AND(appendage) else: #catch if class= basestring also, because it will be removed in simplify() appendage = OR(appendage) hypothesis.append(appendage) return simplify(hypothesis)
def backchain_to_goal_tree(rules, hypothesis): treeNode = OR(hypothesis) #For every rule in the tree, see which ones have consequents that match my hypothesis matches = [] #iterate through every rule and collect the ones whose consequents match my hypothesis for rule in rules: #Fill in each consequent of the rule with the correct name of the antecendents for consequent in rule.consequent(): matchAttempt = match(consequent, hypothesis) #If we can match one of the consequents, we want to fill in the atecedents with the appropriate hypothesis if(matchAttempt != None and not rule in matches): for i, expression in enumerate(rule.antecedent()): rule.antecedent()[i] = populate(expression, matchAttempt) matches.append(rule) #At this point we have a list of the rules that match, and all of the antecendents are filled in with the variable names we can fill them in with treeNode = OR(hypothesis) for ruleMatch in matches: antecedent = ruleMatch.antecedent() if( isinstance(antecedent, AND)): node = AND() else: node = OR() for newHypothesis in antecedent: node.append(backchain_to_goal_tree(rules, newHypothesis)) treeNode.append(node) return simplify(treeNode)
def backchain_to_goal_tree(rules, hypothesis): """ Takes a hypothesis (string) and a list of rules (list of IF objects), returning an AND/OR tree representing the backchain of possible statements we may need to test to determine if this hypothesis is reachable or not. This method should return an AND/OR tree, that is, an AND or OR object, whose constituents are the subgoals that need to be tested. The leaves of this tree should be strings (possibly with unbound variables), *not* AND or OR objects. Make sure to use simplify(...) to flatten trees where appropriate. """ tree = OR(hypothesis) for rule in rules: match_res = match(rule.consequent(), hypothesis) if match_res is not None: or_node = OR() tree.append(or_node) nodes = populate(rule.antecedent(), match_res) if type(nodes) == str: nodes = [nodes] for i in range(len(nodes)): nodes[i] = backchain_to_goal_tree(rules, nodes[i]) or_node.append(nodes) tree = simplify(tree) return tree
def backchain_to_goal_tree(rules, hypothesis): # print ("backchain_to_goal_tree", rules, hypothesis) result = OR(hypothesis) for rule in rules: for then in rule.consequent(): m = match(then, hypothesis) if m == None: continue if isinstance(rule.antecedent(), AND): new_rule = AND([ backchain_to_goal_tree(rules, populate(pattern, m)) for pattern in rule.antecedent() ]) result.append(new_rule) elif isinstance(rule.antecedent(), OR): new_rule = OR([ backchain_to_goal_tree(rules, populate(pattern, m)) for pattern in rule.antecedent() ]) result.append(new_rule) elif isinstance(rule.antecedent(), str): new_rule = OR( backchain_to_goal_tree(rules, populate(rule.antecedent(), m))) result.extend(new_rule) else: print("backchain_to_goal_tree confusing antecedent", rule.antecedent) return None return simplify(result)
def backchain_to_goal_tree(rules, hypothesis): """ Takes a hypothesis (string) and a list of rules (list of IF objects), returning an AND/OR tree representing the backchain of possible statements we may need to test to determine if this hypothesis is reachable or not. This method should return an AND/OR tree, that is, an AND or OR object, whose constituents are the subgoals that need to be tested. The leaves of this tree should be strings (possibly with unbound variables), *not* AND or OR objects. Make sure to use simplify(...) to flatten trees where appropriate. """ tree = OR(hypothesis) for rule in rules: variables = match(rule.consequent(), hypothesis) if variables is not None: if isinstance(rule.antecedent(), OR): tree.append(OR([ backchain_to_goal_tree(rules, ant) for ant in populate(rule.antecedent(), variables)])) elif isinstance(rule.antecedent(), AND): tree.append(AND([ backchain_to_goal_tree(rules, ant) for ant in populate(rule.antecedent(), variables)])) else: tree.append(backchain_to_goal_tree(rules, populate(rule.antecedent(), variables))) return simplify(tree)
def backchain_to_goal_tree(rules, hypothesis): """ Takes a hypothesis (string) and a list of rules (list of IF objects), returning an AND/OR tree representing the backchain of possible statements we may need to test to determine if this hypothesis is reachable or not. This method should return an AND/OR tree, that is, an AND or OR object, whose constituents are the subgoals that need to be tested. The leaves of this tree should be strings (possibly with unbound variables), *not* AND or OR objects. Make sure to use simplify(...) to flatten trees where appropriate. """ tree = OR(hypothesis) for rule in rules: bounded = match(rule.consequent(), hypothesis) #check if rule can produce the hypothesis if bounded != None: new_antecedent = populate(rule.antecedent(), bounded) #populate the vars of the rule's antecdent #recurse on antecedent if type(new_antecedent) == str: tree.append(backchain_to_goal_tree(rules,new_antecedent)) else: for i,new_hypothesis in enumerate(new_antecedent): new_antecedent[i] = backchain_to_goal_tree(rules,new_hypothesis) tree.append(new_antecedent) return simplify(tree)
def backchain_to_goal_tree(rules, hypothesis): """ Takes a hypothesis (string) and a list of rules (list of IF objects), returning an AND/OR tree representing the backchain of possible statements we may need to test to determine if this hypothesis is reachable or not. This method should return an AND/OR tree, that is, an AND or OR object, whose constituents are the subgoals that need to be tested. The leaves of this tree should be strings (possibly with unbound variables), *not* AND or OR objects. Make sure to use simplify(...) to flatten trees where appropriate. """ tree = OR(hypothesis) if len(rules)==0: return hypothesis for rule in rules: if match(rule.consequent()[0], hypothesis) is not None: popRule = populate(rule.antecedent(), match(rule.consequent()[0], hypothesis)) if isinstance(popRule, (AND, OR)): for i in xrange(len(popRule)): popRule[i]=backchain_to_goal_tree(rules, popRule[i]) tree.append(popRule) else: new_tree=backchain_to_goal_tree(rules, popRule) tree.append(new_tree) return simplify(tree)
def backchain_to_goal_tree(rules, hypothesis): # find rules that produces this hypothesis rules_con = [hypothesis] for rule in rules: for con in rule.consequent(): bindings = match(con, hypothesis) if (bindings != None): # this rule can result in the hypo ant = rule.antecedent() if (isinstance(ant, AND)): rules_con.append( AND([ backchain_to_goal_tree(rules, populate(branch, bindings)) for branch in ant ])) elif (isinstance(ant, OR)): rules_con.append( OR([ backchain_to_goal_tree(rules, populate(branch, bindings)) for branch in ant ])) else: rules_con.append( backchain_to_goal_tree(rules, populate(ant, bindings))) return simplify(OR(rules_con))
def backchain_to_goal_tree(rules, hypothesis): ors = [hypothesis] for rule in rules: consequents = rule.consequent() for consequent in consequents: matched_vars = match(consequent, hypothesis) # matched_vars match if matched_vars or consequent == hypothesis: antecedent = rule.antecedent() if isinstance(antecedent, str): populated = populate(antecedent, matched_vars) ors.append(populated) ors.append(backchain_to_goal_tree(rules, populated)) else: ante_rules = [ populate(rule, matched_vars) for rule in antecedent ] ante_res = [ backchain_to_goal_tree(rules, ante_rule) for ante_rule in ante_rules ] if isinstance(antecedent, AND): ors.append(AND(ante_res)) elif isinstance(antecedent, OR): ors.append(OR(ante_res)) return simplify(OR(ors))
def backchain_to_goal_tree(rules, hypothesis): """ Takes a hypothesis (string) and a list of rules (list of IF objects), returning an AND/OR tree representing the backchain of possible statements we may need to test to determine if this hypothesis is reachable or not. This method should return an AND/OR tree, that is, an AND or OR object, whose constituents are the subgoals that need to be tested. The leaves of this tree should be strings (possibly with unbound variables), *not* AND or OR objects. Make sure to use simplify(...) to flatten trees where appropriate. """ hyp = OR([hypothesis]) for rule in rules: # for consequent in rule.consequent(): m = match(rule.consequent(), hypothesis) if m is not None: # good_consequent = populate(consequents, m) antecedents = rule.antecedent() if isinstance(antecedents, str): antecedents = [antecedents] antecedent = [ backchain_to_goal_tree(rules, populate(a, m)) for a in antecedents ] if isinstance(antecedents, OR): hyp.append(OR(antecedent)) else: hyp.append(AND(antecedent)) return simplify(hyp)
def backchain_to_goal_tree(rules, hypothesis): matched_rules = [] results = [] for rule in rules: rule_str = rule.consequent()[0] if match(rule_str, hypothesis) is not None: res = match(rule_str, hypothesis) matched_rules.append(populate(rule.antecedent(), res)) for m in matched_rules: if isinstance(m, AND): res = [] for item in m: res.append(backchain_to_goal_tree(rules, item)) results.append(AND(res)) elif isinstance(m, OR): res = [] for item in m: res.append(backchain_to_goal_tree(rules, item)) results.append(OR(res)) elif isinstance(m, str): results.append(backchain_to_goal_tree(rules, m)) else: raise Exception, "Not sure what do do with object '{}'".format(m) return simplify(OR([hypothesis] + results))
def backchain_to_goal_tree(rules, hypothesis): """ Takes a hypothesis (string) and a list of rules (list of IF objects), returning an AND/OR tree representing the backchain of possible statements we may need to test to determine if this hypothesis is reachable or not. This method should return an AND/OR tree, that is, an AND or OR object, whose constituents are the subgoals that need to be tested. The leaves of this tree should be strings (possibly with unbound variables), *not* AND or OR objects. Make sure to use simplify(...) to flatten trees where appropriate. """ results=[hypothesis] for rule in rules: consequent=rule.consequent() for expr in consequent: bindings=match(expr,hypothesis) if bindings or expr == hypothesis: antecedent=rule.antecedent() if isinstance(antecedent,str): new_hypothesis=populate(antecedent,bindings) results.append(backchain_to_goal_tree(rules,new_hypothesis)) results.append(new_hypothesis) else: statements=[populate(new_antecedent,bindings) for new_antecedent in antecedent] new_results=[] for statement in statements: new_results.append(backchain_to_goal_tree(rules,statement)) if isinstance (antecedent, AND): results.append(AND(new_results)) elif isinstance(antecedent,OR): results.append(OR(new_results)) return simplify(OR(results))
def backchain_to_goal_tree(rules, hypothesis): goal_tree = [hypothesis] for rule in rules: for consequent in rule.consequent(): # Extend from python list bound_variables = match(consequent, hypothesis) if bound_variables is not None: # We have matched expressions antecedent_list = rule.antecedent() if isinstance(antecedent_list, RuleExpression): # Complex expression if isinstance(antecedent_list, AND): inner_goal_tree = AND([ backchain_to_goal_tree( rules, populate(expr, bound_variables)) for expr in antecedent_list ]) elif isinstance(antecedent_list, OR): inner_goal_tree = OR([ backchain_to_goal_tree( rules, populate(expr, bound_variables)) for expr in antecedent_list ]) goal_tree.append(inner_goal_tree) else: # just a string, which is a single leaf node new_hypothesis = populate(antecedent_list, bound_variables) goal_tree.append( OR(backchain_to_goal_tree(rules, new_hypothesis))) return simplify(OR(goal_tree))
def find_ante(rules, hypothesis): antecedents = [hypothesis] for rule in rules: result = match(rule.consequent(), hypothesis) if result != None: ante = populate(rule.antecedent(), result) if isinstance(ante, AND): antecedents.append( simplify(AND([find_ante(rules, cond) for cond in ante]))) elif isinstance(ante, OR): antecedents.append( simplify(OR([find_ante(rules, cond) for cond in ante]))) else: antecedents.append(find_ante(rules, ante)) return simplify(OR(antecedents))
def backchain_to_goal_tree(rules, hypothesis): rule_match = [] for rule in rules: value = match(rule.consequent()[0], hypothesis) if value is not None: rule_match.append(rule) # print rule else: pass if len(rule_match) == 0: return hypothesis else: or_add = OR(hypothesis) for rule in rule_match: vars = match(rule.consequent()[0], hypothesis) if isinstance(rule.antecedent(), OR): for idx, ant in enumerate(rule.antecedent()): add_or = backchain_to_goal_tree( rules, populate(ant, vars)) if idx == 0: or_lst = OR(add_or) else: or_lst = OR(or_lst, add_or) or_lst = simplify(or_lst) or_add = OR(or_add, or_lst) elif isinstance(rule.antecedent(), AND): for idx, ant in enumerate(rule.antecedent()): add_and = backchain_to_goal_tree( rules, populate(ant, vars)) if idx == 0: and_lst = AND(add_and) else: and_lst = AND(and_lst, add_and) and_lst = simplify(and_lst) or_add = OR(or_add, and_lst) else: for idx, ant in enumerate([rule.antecedent()]): add_and = backchain_to_goal_tree( rules, populate(ant, vars)) or_add = OR(or_add, add_and) return simplify(or_add)
def backchain_to_goal_tree(rules, hypothesis): rule_match = [] for rule in rules: value = match(rule.consequent()[0], hypothesis) if value is not None: rule_match.append(rule) # print rule else: pass if len(rule_match) == 0: return hypothesis else: or_add = OR(hypothesis) for rule in rule_match: vars = match(rule.consequent()[0], hypothesis) if isinstance(rule.antecedent(), OR): for idx, ant in enumerate(rule.antecedent()): add_or = backchain_to_goal_tree(rules, populate(ant, vars)) if idx == 0: or_lst = OR(add_or) else: or_lst = OR(or_lst, add_or) or_lst = simplify(or_lst) or_add = OR(or_add, or_lst) elif isinstance(rule.antecedent(), AND): for idx, ant in enumerate(rule.antecedent()): add_and = backchain_to_goal_tree(rules, populate(ant, vars)) if idx == 0: and_lst = AND(add_and) else: and_lst = AND(and_lst, add_and) and_lst = simplify(and_lst) or_add = OR(or_add, and_lst) else: for idx, ant in enumerate([rule.antecedent()]): add_and = backchain_to_goal_tree(rules, populate(ant, vars)) or_add = OR(or_add, add_and) return simplify(or_add)
def backchain_to_goal_tree(rules, hypothesis): #print "\n", "HYPOTHESIS", hypothesis new_hypothesis = [] variable = "" for rule in rules: for cons in rule.consequent(): if match(cons, hypothesis) != None: new_hypothesis.append(rule.antecedent()) variable = match(cons, hypothesis) #print "match!", cons, rule.antecedent() #print "variable", variable #print "new hypothesis", new_hypothesis if len(new_hypothesis) < 1: return hypothesis branches = [hypothesis] for antec in new_hypothesis: expr = populate(antec, variable) #print antec, variable, populate(antec, variable) if isinstance (expr, str): minitree = backchain_to_goal_tree(rules, expr) else: branchez = [] for argg in expr: branchez.append(backchain_to_goal_tree(rules, argg)) if isinstance (expr, OR): minitree = simplify(OR(branchez)) elif isinstance (expr, AND): minitree = simplify(AND(branchez)) branches.append(minitree) #print " TREE", branches tree = simplify(OR(branches)) return tree
def backchain_antecedents(rules, bindings, rule): tree = [] antecedents = rule.antecedent() if isinstance(antecedents, str): antecedents = AND(antecedents) for antecedent in antecedents: branch = simplify(backchain_support(rules, populate(antecedent, bindings))) if branch is None: tree.append(populate(antecedent, bindings)) else: tree.append(branch) if isinstance(rule.antecedent(), AND): return simplify(AND(tree)) else: return simplify(OR(tree))
def backchain_to_goal_tree(rules, hypothesis): matches = [hypothesis] for rule in rules: var_names = match(rule.consequent()[0], hypothesis) if var_names is not None: temp = copy.deepcopy(rule.antecedent()) if isinstance(temp, list): for i in range(len(temp)): temp[i] = simplify( backchain_to_goal_tree(rules, populate(temp[i], var_names))) matches.append(simplify(temp)) else: matches.append( simplify( populate(backchain_to_goal_tree(rules, temp), var_names))) return simplify(OR(matches))
def backchain_to_goal_tree(rules, hypothesis): result2 = [hypothesis] # while set[newh]!= set([hypothesis]): for condition in rules: resuls1 = [] if isinstance(condition, IF): result = condition.antecedent() condition = condition.consequent() data = match(condition[0], hypothesis) if data is not None: # print(type(result)) if not isinstance(result, list): result = [result] for r in result: if isinstance(r, OR): for i in range(len(r)): result3 = [] newh = populate(r[i], data) # result3.append(newh) result3.append(backchain_to_goal_tree(rules, newh)) resuls1.append(OR(result3)) elif isinstance(r, AND): for i in range(len(r)): result3 = [] newh = populate(r[i], data) # result3.append(newh) result3.append(backchain_to_goal_tree(rules, newh)) resuls1.append(AND(result3)) else: newh = populate(r, data) # resuls1.append(newh) # print(newh) newresult = backchain_to_goal_tree(rules, newh) print(newresult) resuls1.append(newresult) if isinstance(result, AND): result2.append(AND(resuls1)) else: result2.append(OR(resuls1)) print(simplify(OR(result2))) return simplify(OR(result2))
def backchain_to_goal_tree(rules, hypothesis): result = [] for rule in rules: matched = match(rule.consequent()[0], hypothesis) if matched != None: antecedent = rule.antecedent() result.append(iterate_node(rules, antecedent, matched)) if len(result) > 0: return simplify(OR(hypothesis, OR(result))) else: return hypothesis
def backchain_to_goal_tree(rules, hypothesis): #print "Rules: ",rules print "H: ",hypothesis #if hypothesis=='zot': #print "Rules: ",rules #nodes=[rule.antecedent() for rule in rules if (match(rule.consequent()[0],hypothesis) or match=={})] #print nodes a={} nodes=[] for rule in rules: #print "Consequent: ",rule.consequent()[0] d=match(rule.consequent()[0],hypothesis) #print d if d or d=={}: #print "MATCHED!!" nodes.append(rule.antecedent()) #print rule.antecedent() #print nodes test_match=match(rule.consequent()[0],hypothesis) if test_match: a = dict(a.items()+test_match.items()) print a tree=OR(hypothesis) for node in nodes: print "type: ",type(node) if type(node) is OR or type(node) is AND: print "\n\nAppending list of nodes: ",[backchain_to_goal_tree(rules, populate(elem,a)) for elem in node] tree.append(type(node)([backchain_to_goal_tree(rules, populate(elem,a)) for elem in node])) else: print "\n\nAppending node: ",backchain_to_goal_tree(rules,populate(node,a)) tree.append(backchain_to_goal_tree(rules,populate(node,a))) print "\n\n#####TREE!!\n",simplify(tree) return simplify(tree)
def backchain_support(rules, hypothesis): tree = [] for rule in rules: for consequent in rule.consequent(): bindings = match(consequent, hypothesis) if bindings is not None: tree.append(populate(consequent, bindings)) tree.append(backchain_antecedents(rules, bindings, rule)) if len(tree) is not 0: return simplify(OR(tree))
def backchain_to_goal_tree(rules, hypothesis): root = OR(hypothesis) for rule in rules: for consequent in rule.consequent(): matchResult = match(consequent, hypothesis) if matchResult != None: antecedent = rule.antecedent() newHypothesis = AND() if isinstance(antecedent, AND) else OR() if isinstance(antecedent, str): antecedent = [antecedent] for part in antecedent: newHypothesis.append(backchain_to_goal_tree(rules, populate(part, matchResult))) root.append(newHypothesis) return simplify(root)
def expand_subtree(subtree, bindings, rules): # build an identical subtree by recursively # walking and replacing each leaf with a backchained # tree cloned_node = subtree.__class__() for expression in subtree: if isinstance(expression, RuleExpression): cloned_node.append( expand_subtree(expression, bindings) ) else: # assume if it's not a RuleExpression, it's a leaf node hypothesis = populate(expression, bindings) cloned_node.append( backchain_to_goal_tree(rules, hypothesis) ) return simplify( cloned_node )
def backchain_to_goal_tree(rules, hypothesis): print "backchain_to_goal_tree", hypothesis possible = [hypothesis] for rule in rules: print "rule", rule for consequence in rule.consequent(): bindings = match(consequence, hypothesis) if bindings != None: print "bindings", bindings sub_hypothesis = populate(rule.antecedent(), bindings) print "sub_hypothesis", sub_hypothesis sub_hypothesis_extended = extendGoalTree(rules, sub_hypothesis) possible.append(sub_hypothesis_extended) return simplify(OR(possible) )
def backchain_to_goal_tree(rules, hypothesis, toprint = 0): # Found git entry from junoon53. Outlined flow. Recreating from flow. goal_tree = [hypothesis] if toprint >=1 : clno = getframeinfo(currentframe()).lineno;funcDebug({"\n Hypothesis is: ":hypothesis,"\n Goal tree is: ":goal_tree},clno) for rule in rules: consequent = rule.consequent() if toprint >= 1: clno = getframeinfo(currentframe()).lineno;funcDebug({"\n Rule is ":rule,"\n Consequent is ":consequent},clno) for expr in consequent: bindings = match(expr,hypothesis) if toprint >= 1: clno = getframeinfo(currentframe()).lineno;funcDebug({"\n expr is ":expr,"\n bindings is ":bindings},clno) # if bindings is not equal to None, which is return by match when no match is made, # or if the expression retrieved from the consequent of the rule is equal to the # hypothesis, retrieve the antecedents of the rule for tests and recursion. Otherwise, # fetch the next expression. if bindings or expr == hypothesis: antecedent = rule.antecedent() # Is the antecedent a string? If so we can recurse on it as a new hypothesis. # If not it must be a list of expressions that we will have to parse. if isinstance(antecedent,str): new_hypo = populate(antecedent,bindings) goal_tree.append(backchain_to_goal_tree(rules,new_hypo)) # Once recursion completes and the results of that recursion are # appended to the goal tree, we can append the new_hypo to the goal tree. goal_tree.append(new_hypo) else: # Assuming antecedent is a list of expressions, retrieve them and assemble a list # of statements to be acted on # junoon53 used a list comprehension here but I'm going to write out the whole for # loop just to make sure I know what is going on. statements = [] new_goal_tree=[] for anteEx in antecedent: statements.append(populate(anteEx,bindings)) for statement in statements: new_goal_tree.append(backchain_to_goal_tree(rules,statement)) goal_tree.append(createStatement(new_goal_tree,antecedent)) return simplify(OR(goal_tree))
def backchain_to_goal_tree(rules, hypothesis): matching_rules = [] runningOR = OR() for rule in rules: match_result = match(rule._action[0], hypothesis) if match_result != None: runningOR.append(populate(rule._action[0], match_result)) conditional = rule._conditional runningCondition = AND() for condition in range(0, len(conditional)): condition2 = populate(conditional[condition], match_result) runningCondition.append(backchain_to_goal_tree(rules, condition2)) runningOR.append(runningCondition) if len(runningOR) != 0: return simplify(runningOR) else: return hypothesis
def backchain_to_goal_tree(rules, hypothesis): or_conditionals=[hypothesis] for rule in rules: for consequent in list(rule.consequent()): matches = match(consequent,hypothesis) if matches!=None: antecedent = rule.antecedent() if isinstance(antecedent,AND) or isinstance(antecedent,OR): sub_tree = [backchain_to_goal_tree(rules,populate(element,matches)) for element in list(antecedent)] if isinstance(antecedent,AND): or_conditionals.append(AND(sub_tree)) else: or_conditionals.append(OR(sub_tree)) else: or_conditionals.append(backchain_to_goal_tree(rules,populate(antecedent,matches))) return simplify(OR(or_conditionals)) raise NotImplementedError
def backchain_to_goal_tree(rules, hypothesis): matchedRules = [] orExpression = OR(hypothesis) for rule in rules: for expression in rule.consequent(): thisMatch = match(expression, hypothesis) if(not thisMatch is None): ruleExpression = orExpression antecedant = rule.antecedent() if(isinstance(antecedant, RuleExpression)): if(isinstance(antecedant, AND)): andExpression = AND() orExpression.append(andExpression) ruleExpression = andExpression for antecedantExpression in antecedant: ruleExpression.append(backchain_to_goal_tree(rules, populate(antecedantExpression, thisMatch))) else: orExpression.append(populate(backchain_to_goal_tree(rules, antecedant), thisMatch)) return simplify(orExpression)
def backchain_to_goal_tree(rules, hypothesis): # check rules for matching consequents # i) no matches -> hypothesis is a leaf # ii) matches -> OR(antecedent) or_cond = OR() # always append the hypothesis or_cond.append(hypothesis) for rule in rules: bindings = match(rule.consequent()[0], hypothesis) if bindings: # append the goal tree from the antecedent ante = rule.antecedent() if isinstance(ante, RuleExpression): or_cond.append( expand_subtree(ante, bindings, rules) ) return simplify( or_cond )
def backchain_to_goal_tree(rules, hypothesis): results = [hypothesis] for rule in rules: consequent = rule.consequent() for expr in consequent: bindings = match(expr, hypothesis) if bindings or expr == hypothesis: antecedent = rule.antecedent() if isinstance(antecedent, str): new_hypothesis = populate(antecedent, bindings) results.append(backchain_to_goal_tree(rules, new_hypothesis)) results.append(new_hypothesis) else: statements = [populate(ante_expr, bindings) for ante_expr in antecedent] new_results = [] for statement in statements: new_results.append(backchain_to_goal_tree(rules, statement)) results.append(create_statement(new_results, antecedent)) return simplify(OR(results))
def backchain_to_goal_tree(rules, hypothesis): """ #Try 3 tree = [hypothesis] for rule in rules: for exp in rule.consequent(): matching = match(exp, hypothesis) if matching !=None: antecedent = rule.antecedent() if type(antecedent) is str: newHyp = populate(antecedent, matching) tree.append(backchain_to_goal_tree(rules, newHyp)) tree.append(newHyp) else: statements = [populate(exp, matching) for exp in antecedent] newTree = [] for statement in statements: newTree.append(backchain_to_goal_tree(rules, statement)) if type(antecedent) == type(OR()): tree.append(OR(newTree)) else: tree.append(AND(newTree)) return simplify(OR(tree)) """ #Try 2 tree = [hypothesis] for rule in rules: for exp in rule.consequent(): matching = match(exp, hypothesis) if matching != None: filledAnts = populate(rule.antecedent(), matching) if type(filledAnts) == type(AND()): andState = AND([backchain_to_goal_tree(rules, state) for state in filledAnts]) tree.append(andState) elif type(filledAnts) == type(OR()): orState = OR([backchain_to_goal_tree(rules, state) for state in filledAnts]) tree.append(orState) else: tree.append(backchain_to_goal_tree(rules, filledAnts)) return simplify(OR(tree))
def backchain_to_goal_tree(rules, hypothesis): goal_tree = OR(hypothesis) for rule in rules: for expr in rule.consequent(): bindings = match(expr, hypothesis) if bindings or bindings == {}: # we have a match antecedent = rule.antecedent() subtree = AND() if isinstance(antecedent, AND) else OR() if isinstance(antecedent, str): new_nodes = [populate(antecedent, bindings)] else: new_nodes = [populate(subexpr, bindings) for subexpr in antecedent] for new_node in new_nodes: subtree.append(backchain_to_goal_tree(rules, new_node)) goal_tree.append(subtree) return simplify(goal_tree)
def backchain_to_goal_tree(rules, hypothesis): or_condition = [] no_match = True for rule in rules: consequents = rule.consequent() if not isinstance(consequents, list): consequents = [consequents] for consequent in consequents: var_map = match(consequent, hypothesis) if var_map is None: continue no_match = False and_sub_condition = [] if var_map == {}: and_sub_condition.append(AND()) conditions = rule.antecedent() is_and = True if not isinstance(conditions, list): conditions = [conditions] if isinstance(conditions, OR): is_and = False for condition in conditions: pop_res = populate(condition, var_map) and_sub_condition.append(backchain_to_goal_tree(rules, pop_res)) if is_and: or_condition.append(AND(and_sub_condition)) else: or_condition.append(OR(and_sub_condition)) if no_match: return hypothesis res = OR([hypothesis, OR(or_condition)]) res = simplify(res) return res
def backchain_to_goal_tree(rules, hypothesis): """ Takes a hypothesis (string) and a list of rules (list of IF objects), returning an AND/OR tree representing the backchain of possible statements we may need to test to determine if this hypothesis is reachable or not. This method should return an AND/OR tree, that is, an AND or OR object, whose constituents are the subgoals that need to be tested. The leaves of this tree should be strings (possibly with unbound variables), *not* AND or OR objects. Make sure to use simplify(...) to flatten trees where appropriate. """ or_content = [hypothesis] for rule in rules: for consequent in rule.consequent(): _match = match(consequent, hypothesis) if _match is not None: or_content.append(recursive(rules, populate(rule.antecedent(),_match))) return simplify(OR(or_content))
def backchain_to_goal_tree(rules, hypothesis): temp = hypothesis l = [] for i in rules: q = i.consequent() p = False for j in q: m = match(j,hypothesis) if (m != None): n = populate(i.antecedent(), m) l.append(n) if (len(l) == 0): return hypothesis for i in l: if isinstance(i,str): i = backchain_to_goal_tree(rules,i) else: x = len(i) for j in range(x): i[j] = backchain_to_goal_tree(rules,i[j]) temp = simplify(OR(temp, i)) return temp