Beispiel #1
0
def test_procces_runner_simple():
    state = Mock_Model_State_Shape(a=2.1, b=4.1)
    processes = flatten_list([
        Process(
            func=process_add,
            config_inputs=lambda config: [
                I(config.foo, as_='x'),
                I(config.bar, as_='y'),
            ],
            state_outputs=lambda result: [
                (result, 'c'),
            ],
        ),
        Process(
            func=process_add,
            config_inputs=lambda config: [
                I(config.foo, as_='x'),
            ],
            state_inputs=lambda state: [
                I(state.a, as_='y'),
            ],
            state_outputs=lambda result: [
                (result, 'd'),
            ],
        ),
    ])
    run_processes = process_runner.initialize_processes(processes)
    state_2 = run_processes(initial_state=state)
    assert state_2.c == 4
    assert state_2.d == 3.1
Beispiel #2
0
def test_immutable_mode_0():
    processes = [
        Process(
            func=process_add,
            state_inputs=lambda state: [
                I(state.a, as_='x'),
            ],
            additional_inputs=lambda: [
                I(1, as_='y'),
            ],
            state_outputs=lambda result: [(result, 'a')],
        ),
    ]

    state = Mock_Model_State_Shape(a=0, b=0)
    assert state.a == 0

    run_processes = process_runner.initialize_processes(processes)
    # Checks that state is immutable
    state_2 = run_processes(initial_state=state)
    assert state.a == 1
    assert state_2.a == 1  # hours ran
    state_2 = run_processes(initial_state=state)
    assert state.a == 2
    assert state_2.a == 2  # hours ran
Beispiel #3
0
def test_log_next_row():
    state = Mock_Model_State_Shape(
        a=1.1,
        b=2.2,
        target='humbug',
    )
    log_process = log_values(state_inputs=lambda state: [
        I(state.a, as_='a'),
        I(state.target, as_='foo'),
    ], )
    processes = [log_process]
    process_runner = ProcessRunner()
    process_runner.run_processes(processes, state)

    # Add next row
    process_runner.tm.advance_row()
    log_process = log_values(state_inputs=lambda state: [
        I(state.a, as_='a'),
        I(state.target, as_='foo'),
    ], )
    processes = [log_process]
    process_runner.run_processes(processes, state)
    assert len(process_runner.state_logs) == 2
    assert process_runner.state_logs[0] == {'a': 1.1, 'foo': 'humbug'}
    assert process_runner.state_logs[1] == {'a': 1.1, 'foo': 'humbug'}
Beispiel #4
0
def test_log_skip_row():
    state = Mock_Model_State_Shape(
        a=1.1,
        b=2.2,
        target='humbug',
    )
    log_process = log_values(state_inputs=lambda state: [
        I(state.a, as_='a'),
        I(state.target, as_='foo'),
    ], )
    processes = [log_process]
    process_runner = ProcessRunner()
    process_runner.run_processes(processes, state)

    # Progress 2 time steps without logging
    process_runner.tm.advance_row()
    process_runner.tm.advance_row()
    log_process = log_values(state_inputs=lambda state: [
        I(state.a, as_='a'),
        I(state.target, as_='foo'),
    ], )
    processes = [log_process]
    process_runner.run_processes(processes, state)
    assert len(process_runner.state_logs) == 3
    assert process_runner.state_logs[0] == {'a': 1.1, 'foo': 'humbug'}
    assert process_runner.state_logs[1] == {}
    assert process_runner.state_logs[2] == {'a': 1.1, 'foo': 'humbug'}
Beispiel #5
0
def test_advance_time_step():
    state = Mock_Model_State_Shape(a=2.1, b=4.1)
    processes = flatten_list([
        Process(
            func=process_add,
            config_inputs=lambda config: [
                I(config.foo, as_='x'),
                I(config.bar, as_='y'),
            ],
            state_outputs=lambda result: [
                (result, 'c'),
            ],
        ),
        advance_time_step_process(),
        Process(
            func=process_add,
            config_inputs=lambda config: [
                I(config.foo, as_='x'),
            ],
            state_inputs=lambda state: [
                I(state.a, as_='y'),
            ],
            state_outputs=lambda result: [
                (result, 'd'),
            ],
        ),
    ])
    process_runner.DEBUG_MODE = True
    assert process_runner.tm.row_index == 0
    run_processes = process_runner.initialize_processes(processes)
    state_2 = run_processes(initial_state=state)
    assert state_2.c == 4
    assert state_2.d == 3.1
    assert process_runner.tm.row_index == 1
Beispiel #6
0
def test_log_multiple_values():
    state = Mock_Model_State_Shape(
        a=1.1,
        b=2.2,
        target='humbug',
    )
    log_process = log_values(state_inputs=lambda state: [
        I(state.a, as_='a'),
        I(state.target, as_='foo'),
    ], )
    processes = [log_process]
    process_runner = ProcessRunner()
    process_runner.run_processes(processes, state)

    # run 2
    log_process = log_values(state_inputs=lambda state: [
        I(state.a, as_='bar'),
        I(state.target, as_='zed'),
    ], )
    processes = [log_process]

    process_runner.run_processes(processes, state)
    assert len(process_runner.state_logs) == 1
    assert process_runner.state_logs[0] == {
        'a': 1.1,
        'foo': 'humbug',
        'bar': 1.1,
        'zed': 'humbug'
    }
Beispiel #7
0
def test_that_processRunnerCls_logs_time_for_each_process():
    process_runner.reset_logs()
    state = Mock_Model_State_Shape(a=2.1, b=4.1)
    processes = flatten_list([
        Process(
            func=process_add,
            config_inputs=lambda config: [
                I(config.foo, as_='x'),
                I(config.bar, as_='y'),
            ],
            state_outputs=lambda result: [
                (result, 'c'),
            ],
        ),
        Process(
            func=process_add_complex,
            config_inputs=lambda config: [
                I(config.foo, as_='x'),
            ],
            state_inputs=lambda state: [
                I(state.a, as_='y'),
            ],
            state_outputs=lambda result: [
                (result, 'd'),
            ],
        ),
    ])
    run_processes = process_runner.initialize_processes(processes)
    state_2 = run_processes(initial_state=state)
    assert state_2.c == 4
    assert state_2.d == 50026000.00000531
    time_logs = dict(process_runner.time_logs)
    print(time_logs)
    assert time_logs['process_add'] < time_logs['process_add_complex']
def run_model_non_mutative():
    for i in range(100000):
        prev_state = Mock_Model_State_Shape(a=2.1, b=4.1)
        new_val = i

        new_state = map_result_to_state_fn(prev_state, [
            I('out', as_='nested.na'),
        ], {'out': new_val})
Beispiel #9
0
def test_procces_b_complex():
    state = Mock_Model_State_Shape(a=2.1, b=4.1)
    processes = filter_none(
        flatten_list([
            [
                Process(
                    func=process_add,
                    # Note: i=i ensures that we pass i into lambda scope
                    # Otherwise i would = i at the end of the scope
                    additional_inputs=lambda i=i: [
                        I(i, as_='x'),
                    ],
                    state_inputs=lambda state: [
                        I(state.a, as_='y'),
                    ],
                    state_outputs=lambda result: [
                        (result, 'a'),
                    ],
                ) if i < 4 else Process(
                    func=process_add,
                    additional_inputs=lambda: [
                        I(100, as_='x'),
                    ],
                    state_inputs=lambda state: [
                        I(state.a, as_='y'),
                    ],
                    state_outputs=lambda result: [
                        (result, 'a'),
                    ],
                ) if i < 8 else None for i in range(10)
            ],
            Process(
                func=lambda x: {'out': x},
                state_inputs=lambda state: [
                    I(state.a, as_='x'),
                ],
                state_outputs=lambda result: [
                    (result['out'], 'b'),
                ],
            ),
            Process(
                func=lambda x: {'out': x * 2},
                state_inputs=lambda state: [
                    I(state.b, as_='x'),
                ],
                state_outputs=lambda result: [
                    (result['out'], 'b'),
                ],
            ),
        ]))
    run_processes = process_runner.initialize_processes(processes)
    state_2 = run_processes(initial_state=state)
    assert state_2.a == 408.1
    assert state_2.b == 816.2
Beispiel #10
0
def test_procces_runner_list_result():
    state = Mock_Model_State_Shape(a=2.1, b=4.1)

    processes = flatten_list([
        Process(
            func=lambda: [1, 2, 3],
            comment="initialize with lists",
            state_outputs=lambda result: [(result, 'lst')],
        ),
    ])
    run_processes = process_runner.initialize_processes(processes)
    state_2 = run_processes(initial_state=state)
    assert state_2.lst == [1, 2, 3]
Beispiel #11
0
def test_side_effect_arg():
    state = Mock_Model_State_Shape(a=2.1, b=4.1)
    fn = MagicMock()
    processes = flatten_list([
        Process(
            func=fn,
            args=['hello'],
        ),
    ])
    run_processes = process_runner.initialize_processes(processes)
    state_2 = run_processes(initial_state=state)
    fn.assert_called_with('hello')
    assert state_2.a == 2.1
    assert state_2.b == 4.1
Beispiel #12
0
def test_process_runner_time():
    state = Mock_Model_State_Shape(a=2.1, b=4.1)
    processes = flatten_list([
        Process(
            func=lambda x, y: x + y,
            config_inputs=lambda config: [
                I(config.foo, as_='x'),
                I(config.bar, as_='y'),
            ],
            state_outputs=lambda result: [
                (result, 'c'),
            ],
        ),
        Process(
            func=lambda x, y: x + y,
            config_inputs=lambda config: [
                I(config.foo, as_='x'),
            ],
            state_inputs=lambda state: [
                I(rgetattr(state.matrix[0], state.ind), as_='y'),
            ],
            state_outputs=lambda result: [
                (result, 'c'),
            ],
        ),
        [
            Process(
                func=lambda x, y: x + y,
                config_inputs=lambda config: [
                    I(config.foo, as_='x'),
                ],
                additional_inputs=lambda i=i: [
                    I(i, as_='y'),
                ],
                state_outputs=lambda result: [
                    (result, 'd'),
                ],
            ) for i in range(5)
        ],
    ])
    run_processes = process_runner.initialize_processes(processes)

    time = min(
        repeat(lambda: run_processes(initial_state=state),
               number=2000,
               repeat=5))
    # assert 0.220 < time < 0.26 # Times with old method
    assert 0.04 < time < 0.08
Beispiel #13
0
def test_use_external_state():
    state = Mock_Model_State_Shape(a=2.1, b=4.1)
    process = Process(
        func=process_add,
        external_state_inputs=lambda e_state, row_index: [
            I(e_state.data_a[row_index], as_='x'),
        ],
        additional_inputs=lambda: [
            I(10, as_='y'),
        ],
        state_outputs=lambda result: [
            (result, 'a'),
        ],
    )
    run_processes = process_runner.initialize_processes([process])
    state_2 = run_processes(initial_state=state)
    assert state_2.a == 11
Beispiel #14
0
def test_side_effect_state_arg():
    state = Mock_Model_State_Shape(a=2.1, b=4.1)
    fn = MagicMock()
    processes = flatten_list([
        Process(
            func=fn,
            comment="fn",
            state_inputs=lambda state: [
                I(state.a, as_='input'),
            ],
        ),
    ])
    run_processes = process_runner.initialize_processes(processes)
    state_2 = run_processes(initial_state=state)
    fn.assert_called_with(input=2.1)
    assert state_2.a == 2.1
    assert state_2.b == 4.1
Beispiel #15
0
def test_process_with_string_literals():
    """Use rgetattr to use state as target.

    We can use string literals to insert variables into our target

    """
    state = Mock_Model_State_Shape(a=1,
                                   b=2,
                                   nested=Mock_Nested_State(3, 1003),
                                   target="na")
    processes = flatten_list([
        Process(
            func=process_add,
            state_inputs=lambda state: [
                I(state.a, as_='x'),
                # uses the target from additional inputs to define the nested prop to use
                I(rgetattr(state, f'nested.{state.target}'), as_='y'),
            ],
            state_outputs=lambda result: [
                (result, 'c'),
            ],
        ),
        Process(
            func=lambda x: {'out': x},
            additional_inputs=lambda: [
                I('nab', as_='x'),
            ],
            state_outputs=lambda result: [(result['out'], 'target')],
        ),
        Process(
            func=process_add,
            state_inputs=lambda state: [
                I(state.a, as_='x'),
                # uses the target from additional inputs to define the nested prop to use
                I(rgetattr(state, f'nested.{state.target}'), as_='y'),
            ],
            state_outputs=lambda result: [
                (result, 'd'),
            ],
        ),
    ])
    run_processes = process_runner.initialize_processes(processes)
    state_2 = run_processes(initial_state=state)
    assert state_2.c == 4
    assert state_2.d == 1004
Beispiel #16
0
def test_process_runner_using_wildcard_multiple():
    state = Mock_Model_State_Shape(a=2.1, b=4.1, matrix=[[1, 2, 3], [4, 5, 6]])
    processes = flatten_list([
        Process(
            func=lambda input: input,
            state_inputs=lambda state: [
                I([[state.matrix[i][j] for j in range(len(state.matrix[i]))]
                   for i in range(len(state.matrix))],
                  as_='input')
            ],
            state_outputs=lambda result: [
                (result, 'c'),
            ],
        ),
    ])
    run_processes = process_runner.initialize_processes(processes)
    state_2 = run_processes(initial_state=state)
    assert state_2.c == [[1, 2, 3], [4, 5, 6]]
Beispiel #17
0
def test_process_runner_using_wildcard_list_index():
    state = Mock_Model_State_Shape(a=2.1, b=4.1, matrix=[[1, 2, 3], [4, 5, 6]])
    processes = flatten_list([
        Process(
            func=lambda input: input,
            state_inputs=lambda state: [
                # TODO: can we abstract this to make it readable?
                I([state.matrix[i][1] for i in range(len(state.matrix))],
                  as_='input')
            ],
            state_outputs=lambda result: [
                (result, 'c'),
            ],
        ),
    ])
    run_processes = process_runner.initialize_processes(processes)
    state_2 = run_processes(initial_state=state)
    assert state_2.c == [2, 5]
Beispiel #18
0
def test_process_runner_using_wildcard_list_obj():
    state = Mock_Model_State_Shape(a=2.1, b=4.1, matrix=[[1, 2, 3], [4, 5, 6]])
    processes = flatten_list([
        Process(
            func=lambda input: input,
            state_inputs=lambda state: [
                I([
                    state.nested_lst_obj[i].na
                    for i in range(len(state.nested_lst_obj))
                ],
                  as_='input'),
            ],
            state_outputs=lambda result: [(result, 'd')],
        ),
    ])
    run_processes = process_runner.initialize_processes(processes)
    state_2 = run_processes(initial_state=state)
    assert state_2.d == [1, 3]
Beispiel #19
0
def test_process_error_with_comment():
    state = Mock_Model_State_Shape(a=2.1, b=4.1)
    processes = flatten_list([
        Process(
            func=process_add,
            comment="Demo Process",
            additional_inputs=lambda: [
                I(None, as_='x'),
                I(4, as_='y'),
            ],
            state_outputs=lambda result: [
                (result, 'c'),
            ],
        ),
    ])
    process_runner.DEBUG_MODE = True
    run_processes = process_runner.initialize_processes(processes)
    with pytest.raises(Run_Process_Error) as exc:
        run_processes(initial_state=state)
    assert exc.value.message == 'Failed to run Demo Process'
Beispiel #20
0
def test_procces_runner_nested_args():
    state = Mock_Model_State_Shape(a=2.1, b=4.1)

    processes = flatten_list([
        Process(
            func=process_add,
            config_inputs=lambda config: [
                I(config.roo['abc'], as_='x'),
            ],
            state_inputs=lambda state: [
                I(state.a, as_='y'),
            ],
            state_outputs=lambda result: [
                (result, 'a'),
            ],
        ),
    ])
    run_processes = process_runner.initialize_processes(processes)
    state_2 = run_processes(initial_state=state)
    assert state_2.a == 7.1
Beispiel #21
0
def test_process_using_gate():
    state = Mock_Model_State_Shape(a=2.1, b=4.1)
    fn_1 = MagicMock()
    fn_2 = MagicMock()

    processes = flatten_list([
        Process(
            func=fn_1,
            gate=1 == 2,  # False
        ),
        Process(
            func=fn_2,
            gate=2 == 2,  # True
        ),
    ])
    run_processes = process_runner.initialize_processes(processes)
    run_processes(initial_state=state)

    assert not fn_1.called
    assert fn_2.called
Beispiel #22
0
def test_procces_runner_nested_args_list_out():
    state = Mock_Model_State_Shape(a=2.1, b=4.1, lst=[1, 2, 3])
    processes = flatten_list([
        Process(
            func=lambda i, j: [i, j],
            config_inputs=lambda config: [
                I(config.foo, as_='i'),
            ],
            state_inputs=lambda state: [
                I(state.a, as_='j'),
            ],
            state_outputs=lambda result: [
                (result[0], 'lst.0'),
                (result[1], 'lst.1'),
            ],
        ),
    ])
    run_processes = process_runner.initialize_processes(processes)
    state_2 = run_processes(initial_state=state)
    assert state_2.lst[0] == process_runner.config.foo
    assert state_2.lst[1] == state.a
Beispiel #23
0
def test_appending_to_state_list():
    """We can use '.+' to append to a list.

    This requires the process to set the format_output flag to true.
    """
    existing_logs = [
        {
            'a': 1,
            'foo': 'bar'
        },
        {
            'a': 2,
            'foo': 'barh'
        },
        {
            'a': 3,
            'foo': 'barhum'
        },
        {
            'a': 4,
            'foo': 'barhumb'
        },
    ]
    state = Mock_Model_State_Shape(
        1.1,
        2.2,
        logs=existing_logs,
    )
    new_log = {'a': 5, 'foo': 'barhumbug'},
    processes = [
        Process(
            func=lambda: new_log,
            # We have to use format output flag to enable this
            format_output=True,
            state_outputs=lambda result: [(result, 'logs.+')])
    ]
    process_runner = ProcessRunner()
    state_out = process_runner.run_processes(processes, state)
    assert state_out.logs[4] == new_log
Beispiel #24
0
def test_procces_b_optional():
    state = Mock_Model_State_Shape(a=2.1, b=4.1)

    config_do_this = True
    config_dont_do_this = False

    processes = filter_none(
        flatten_list([
            Process(
                func=process_add,
                additional_inputs=lambda: [
                    I(10, as_='x'),
                ],
                state_inputs=lambda state: [
                    I(state.a, as_='y'),
                ],
                state_outputs=lambda result: [
                    (result, 'c'),
                ],
            ) if config_do_this else None,
            Process(
                func=process_add,
                additional_inputs=lambda: [
                    I(100, as_='x'),
                ],
                state_inputs=lambda state: [
                    I(state.a, as_='y'),
                ],
                state_outputs=lambda result: [
                    (result, 'd'),
                ],
            ) if config_dont_do_this else None,
        ]))
    run_processes = process_runner.initialize_processes(processes)
    state_2 = run_processes(initial_state=state)
    assert state_2.c == 12.1
    assert state_2.d == 0
Beispiel #25
0
def test_procces_runner_nested_simple():
    state = Mock_Model_State_Shape(a=2.1, b=4.1)

    processes = flatten_list([
        [
            Process(
                func=process_add,
                comment="tag me",
                config_inputs=lambda config: [
                    I(config.bar, as_='y'),
                ],
                additional_inputs=lambda: [
                    I(i, as_='x'),
                ],
                state_outputs=lambda result: [
                    (result, 'c'),
                ],
            ) for i in range(10)
        ],
        Process(
            func=process_add,
            config_inputs=lambda config: [
                I(config.foo, as_='x'),
            ],
            state_inputs=lambda state: [
                I(state.a, as_='y'),
            ],
            state_outputs=lambda result: [
                (result, 'd'),
            ],
        ),
    ])
    run_processes = process_runner.initialize_processes(processes)
    state_2 = run_processes(initial_state=state)
    assert state_2.c == 12
    assert state_2.d == 3.1
Beispiel #26
0
def test_that_processRunnerCls_debug_logs_time_for_each_process(
        benchmark_fixture):
    process_runner.reset_logs()
    state = Mock_Model_State_Shape(a=2.1, b=4.1)
    processes = flatten_list([
        Process(
            func=process_add,
            config_inputs=lambda config: [
                I(config.foo, as_='x'),
                I(config.bar, as_='y'),
            ],
            state_outputs=lambda result: [
                (result, 'c'),
            ],
        ),
        Process(
            func=process_add_complex,
            config_inputs=lambda config: [
                I(config.foo, as_='x'),
                I(config.foo, as_='x'),
            ],
            state_inputs=lambda state: [
                I(state.a, as_='y'),
                I(state.nested.na, as_='y1'),
                I(state.nested.na, as_='y2'),
                I(state.nested.na, as_='y3'),
                I(state.nested.na, as_='y4'),
                I(state.nested.na, as_='y5'),
                I(state.nested.na, as_='y6'),
                I(state.nested.na, as_='y7'),
                I(state.nested.na, as_='y8'),
                I(state.nested.na, as_='y9'),
                I(state.nested.na, as_='y10'),
                I(state.nested.na, as_='y11'),
                I(state.nested.na, as_='y12'),
                I(state.nested.na, as_='y13'),
                I(state.nested.na, as_='y14'),
                I(state.nested.na, as_='y15'),
                I(state.nested.na, as_='y16'),
                I(state.nested.na, as_='y17'),
                I(state.nested.na, as_='y18'),
                I(state.nested.na, as_='y19'),
                I(state.nested.na, as_='y110'),
                I(state.nested.na, as_='y111'),
                I(state.nested.na, as_='y112'),
                I(state.nested.na, as_='y113'),
                I(state.nested.na, as_='y114'),
                I(state.nested.na, as_='y115'),
                I(state.nested.na, as_='y116'),
                I(state.nested.na, as_='y117'),
                I(state.nested.na, as_='y118'),
                I(state.nested.na, as_='y119'),
                I(state.nested.na, as_='y120'),
                I(state.nested.na, as_='y121'),
            ],
            state_outputs=lambda result: [
                (result, 'nested.na'),
                (result, 'nested.na'),
                (result, 'nested.na'),
                (result, 'nested.na'),
                (result, 'nested.na'),
                (result, 'nested.na'),
                (result, 'nested.na'),
                (result, 'nested.na'),
                (result, 'nested.na'),
                (result, 'nested.na'),
                (result, 'nested.na'),
                (result, 'nested.na'),
                (result, 'nested.na'),
                (result, 'nested.na'),
                (result, 'nested.na'),
                (result, 'nested.na'),
                (result, 'nested.na'),
                (result, 'nested.na'),
            ],
        ),
    ])
    run_processes = process_runner.initialize_processes(processes)
    state_2 = run_processes(initial_state=state)
    assert state_2.c == 4
    debug_time_logs = process_runner.debug_time_logs
    assert debug_time_logs[1]['input_time'] < 0.083 / benchmark_fixture
    assert debug_time_logs[1]['output_time'] < 0.21 / benchmark_fixture
Beispiel #27
0
import pstats
import cProfile
from vendor.helpers.list_helpers import flatten_list
from proflow.ProcessRunnerCls import ProcessRunner
from proflow.tests.mocks import Mock_Model_State_Shape, Mock_Config_Shape, Mock_External_State_Shape
# %%
config = Mock_Config_Shape(1.1, 2.2)

process_runner = ProcessRunner(config, DEBUG_MODE=True)

# %%
process_runner.external_state = Mock_External_State_Shape()

# %%
# == SETUP INITIAL STATE
initial_state = Mock_Model_State_Shape(1, 2)
initial_state.matrix = [[i * j for i in range(100)] for j in range(100)]
# %%

DEMO_PROCESSES = [
    Process(func=lambda x, y, z: x + y + z,
            comment="Demo process a",
            config_inputs=lambda config: [
                I(config.foo, as_='x'),
            ],
            state_inputs=lambda state: [
                I(state.nested_lst_obj[0].na, as_='y'),
                I(state.matrix[0][0], as_='z')
            ],
            state_outputs=[
                I('_result', as_='nested_lst_obj.0.na'),
# %%
def map_result_to_state(
    prev_state,
    output_map,
    result,
):
    # output_map(prev_state, result)
    # for o in output_map(result):
    #     rsetattr(prev_state, o.as_, o.from_)
    for from_, as_ in output_map(result):
        rsetattr(prev_state, as_, from_)
    return prev_state


prev_state = Mock_Model_State_Shape(a=2.1, b=4.1)


def run_model_mutative():
    for i in range(100000):
        new_val = {'out': i}
        # new_state = map_result_to_state(prev_state, lambda prev_state, result: (
        #     rsetattr(prev_state, 'nested.na', result['out']),
        # ), new_val)
        new_state = map_result_to_state(
            prev_state,
            lambda result: [(result['out'], 'nested.na')
                            # I(result['out'], as_='nested.na'),
                            ],
            new_val)
Beispiel #29
0
def test_procces_b_complex_02():
    state = Mock_Model_State_Shape(a=2.1, b=4.1, c=1)

    def function_with_lots_of_args(season_Astart, Tleaf_C, c_a, e_a, Q, g_bl,
                                   g_sto_0, m, V_cmax_25, J_max_25, D_0, O3,
                                   O3up_acc, td, dd, hr):
        return {
            'gsto_final': 1,
            'A_n_final': 1,
            'A_c_final': 1,
            'A_j_final': 1,
            'A_p_final': 1,
            'R_d': 1,
            'O3up_out': 1,
            'O3up_acc_out': 1,
            'fO3_h_out': 1,
            'fO3_d_out': 1,
        }

    def translate_unit(val, rate):
        return {
            'out': val * rate,
        }

    gsto_processes = [
        Process(
            func=function_with_lots_of_args,
            config_inputs=lambda config: [
                I(config.foo, as_='season_Astart'),
                I(config.foo, as_='Tleaf_C'),
                I(config.foo, as_='c_a'),
                I(config.foo, as_='e_a'),
                I(config.bar, as_='Q'),
                I(config.bar, as_='g_bl'),
                I(config.bar, as_='g_sto_0'),
                I(config.bar, as_='m'),
            ],
            state_inputs=lambda state: [
                I(state.a, as_='V_cmax_25'),
                I(state.a, as_='J_max_25'),
                I(state.a, as_='D_0'),
                I(state.a, as_='O3'),
                I(state.a, as_='O3up_acc'),
                I(state.a, as_='td'),
                I(state.a, as_='dd'),
                I(state.a, as_='hr'),
            ],
            state_outputs=lambda result: [
                (result['gsto_final'], 'b'),
                (result['A_n_final'], 'b'),
                (result['A_c_final'], 'b'),
                (result['A_j_final'], 'b'),
                (result['A_p_final'], 'b'),
                (result['R_d'], 'b'),
                (result['O3up_out'], 'b'),
                (result['O3up_acc_out'], 'b'),
                (result['fO3_h_out'], 'b'),
                (result['fO3_d_out'], 'b'),
            ],
        ),
        Process(
            func=translate_unit,
            state_inputs=lambda state: [
                I(state.b, as_='val'),
            ],
            additional_inputs=lambda: [
                I(0.1, as_='rate'),
            ],
            state_outputs=lambda result: [(result['out'], 'b')],
        ),
        Process(
            func=lambda x: {'out': x * 2},
            state_inputs=lambda state: [
                I(state.c, as_='x'),
            ],
            state_outputs=lambda result: [(result['out'], 'c')],
        ),
    ]

    end_process = Process(
        func=lambda x: {'out': x * 2},
        state_inputs=lambda state: [
            I(state.b, as_='x'),
        ],
        state_outputs=lambda result: [(result['out'], 'b')],
    )

    processes = filter_none(
        flatten_list([
            [gsto_processes for i in range(3)],
            end_process,
        ]))
    run_processes = process_runner.initialize_processes(processes)
    state_2 = run_processes(initial_state=state)
    assert state_2.a == 2.1
    assert state_2.b == 0.2
    assert state_2.c == 8
Beispiel #30
0
def test_annual_cycle():
    hourly_processes = [
        Process(
            func=process_add,
            state_inputs=lambda state: [
                I(state.a, as_='x'),
            ],
            additional_inputs=lambda: [
                I(1, as_='y'),
            ],
            state_outputs=lambda result: [(result, 'a')],
        ),
    ]
    daily_start_processes = [
        Process(
            func=process_add,
            state_inputs=lambda state: [
                I(state.b, as_='x'),
            ],
            additional_inputs=lambda: [
                I(1, as_='y'),
            ],
            state_outputs=lambda result: [(result, 'b')],
        ),
        Process(
            func=lambda x: {'out': x},
            state_inputs=lambda state: [
                I(state.a, as_='x'),
            ],
            state_outputs=lambda result: [(result['out'], 'c')],
        ),
    ]
    daily_end_processes = [
        Process(
            func=lambda x: {'out': x},
            state_inputs=lambda state: [
                I(state.a, as_='x'),
            ],
            state_outputs=lambda result: [(result['out'], 'd')],
        ),
    ]

    daily_process_list = [
        daily_start_processes,
        [hourly_processes for i in range(24)],
        daily_end_processes,
    ]

    daily_processes = flatten_list(daily_process_list)

    state = Mock_Model_State_Shape(a=0, b=0)
    assert state.a == 0

    run_processes = process_runner.initialize_processes(daily_processes)
    state_2 = run_processes(initial_state=state)
    assert state_2.a == 24  # hours ran
    assert state_2.b == 1  # days ran
    assert state_2.c == 0  # hour value at start
    assert state_2.d == 24  # hour value at end

    # default mode mutates state
    state_2 = run_processes(initial_state=state)
    assert state_2.a == 48  # hours ran
    assert state_2.b == 2  # days ran
    assert state_2.c == 24  # hour value at start
    assert state_2.d == 48  # hour value at end

    annual_processes = flatten_list([daily_process_list for d in range(365)])

    state = Mock_Model_State_Shape(a=0, b=0)
    run_processes = process_runner.initialize_processes(annual_processes)
    state_end_of_year = run_processes(initial_state=state)
    assert state_end_of_year.a == 8760  # hours ran
    assert state_end_of_year.b == 365  # days ran