def solve(self, data, vehicles, timeout):
        """Solves the CVRP problem using Monte Carlo Savings method (OLIVEIRA, 2014)

        Parameters:
            data: CVRPData instance
            vehicles: Vehicles number
            timeout: max processing time in seconds

        Returns a solution (MonteCarloSavingsSolution class))
        """
        start = time.time()
        time_found = None

        best = MonteCarloSavingsSolution(data, vehicles)
        best_feasible = best

        savings_lists = self.compute_list_of_savings_list(data)

        solution_lengths = 0
        processed_count = 0

        for savings_list in savings_lists:
            solution = MonteCarloSavingsSolution(data, vehicles)

            for i, j in savings_list[:]:
                if solution.is_complete():
                    break

                if solution.can_process((i, j)):
                    solution, inserted = solution.process((i, j))

                if time.time() - start > timeout:
                    break

            if time.time() - start > timeout:
                break

            if solution.is_complete() and not best_feasible.is_complete():
                best_feasible = solution
            elif solution.is_complete() and solution.length() < best.length():
                best_feasible = solution

            if solution.length() < best.length():
                best = solution
                time_found = time.time() - start

            processed_count = processed_count + 1
            solution_lengths = solution_lengths + solution.length()

        print 'best solution found on {}'.format(time_found)

        if processed_count:
            print 'average solution lengths: {}'.format(solution_lengths / float(processed_count))

        if not best.is_complete():
            from project import util
            print 'Best solution not feasible, printing best feasible found'
            util.print_solution(best_feasible)

        return best
    def solve(self, data, vehicles, timeout):
        """Solves the CVRP problem using Monte Carlo Savings method (OLIVEIRA, 2014)

        Parameters:
            data: CVRPData instance
            vehicles: Vehicles number
            timeout: max processing time in seconds

        Returns a solution (MonteCarloSavingsSolution class))
        """
        start = time.time()
        time_found = None

        best = MonteCarloSavingsSolution(data, vehicles)
        best_feasible = best

        savings_lists = self.compute_list_of_savings_list(data)

        solution_lengths = 0
        processed_count = 0

        for savings_list in savings_lists:
            solution = MonteCarloSavingsSolution(data, vehicles)

            for i, j in savings_list[:]:
                if solution.is_complete():
                    break

                if solution.can_process((i, j)):
                    solution, inserted = solution.process((i, j))

                if time.time() - start > timeout:
                    break

            if time.time() - start > timeout:
                break

            if solution.is_complete() and not best_feasible.is_complete():
                best_feasible = solution
            elif solution.is_complete() and solution.length() < best.length():
                best_feasible = solution
                best = solution
                time_found = time.time() - start

            processed_count = processed_count + 1
            solution_lengths = solution_lengths + solution.length()

        print('best solution found after {} seconds'.format(time_found))

        if processed_count:
            print('average solution lengths: {}'.format(
                solution_lengths / float(processed_count)))

        if not best.is_complete():
            from project import util
            print('Best solution not feasible, printing best feasible found')
            util.print_solution(best_feasible)

        return best
Beispiel #3
0
def main():
    if len(sys.argv) < 3:  # python main.py <file> <vehicles_number> [<p>]
        return usage()

    input_file = sys.argv[1]
    data = data_input.read_file(input_file)
    vehicles = int(sys.argv[2])

    lambda_p = None

    if sys.argv == 4:
        lambda_p = float(sys.argv[3])

    clarke_wright_solver = clarke_wright.ClarkeWrightSolver()
    monte_carlo_savings_solver = monte_carlo_savings.MonteCarloSavingsSolver(
        lambda_p)
    binary_mcscws_solver = binary_mcscws.BinaryMCSCWSSolver()

    timeout = 300

    algorithms = [(clarke_wright_solver, 'ClarkeWrightSolver'),
                  (monte_carlo_savings_solver, 'MonteCarloSavingsSolver'),
                  (binary_mcscws_solver, 'BinaryMCSCWSSolver')]

    best_algorithm = None
    best_solution = None

    for solver, algorithm in algorithms:
        print("=== Starting {} algorithm ===\n".format(algorithm))
        start = time.time()

        solution = solver.solve(data, vehicles, timeout)

        elapsed = time.time() - start

        if not solution.is_complete():
            print('Solution from algorithm {} not a complete solution'.format(
                algorithm))

        print('{} solution:'.format(algorithm))
        util.print_solution(solution)

        print('Elapsed time (seconds): {}'.format(elapsed))

        if best_algorithm is None:
            best_algorithm = algorithm

        if best_solution is None:
            best_solution = solution

        if solution.length() < best_solution.length():
            best_solution = solution
            best_algorithm = algorithm

        print("")
        print("=== Finished {} algorithm ===\n".format(algorithm))

    print('Best solution for \"{}\" problem was from algorithm {}'.format(
        input_file, best_algorithm))
Beispiel #4
0
def main():
    if len(sys.argv) < 3: # python main.py <file> <vehicles_number> [<p>]
        return usage()

    data = data_input.read_file(sys.argv[1])
    vehicles = int(sys.argv[2])

    lambda_p = None

    if sys.argv == 4:
        lambda_p = float(sys.argv[3])

    clarke_wright_solver = clarke_wright.ClarkeWrightSolver()
    monte_carlo_savings_solver = monte_carlo_savings.MonteCarloSavingsSolver(lambda_p)
    binary_mcscws_solver = binary_mcscws.BinaryMCSCWSSolver()

    timeout = 300

    algorithms = [
        (clarke_wright_solver, 'ClarkeWrightSolver'),
        (monte_carlo_savings_solver, 'MonteCarloSavingsSolver'),
        (binary_mcscws_solver, 'BinaryMCSCWSSolver')
    ]

    best_algorithm = None
    best_solution = None

    for solver, algorithm in algorithms:
        start = time.time()

        solution = solver.solve(data, vehicles, timeout)

        elapsed = time.time() - start

        if not solution.is_complete():
            print 'Solution from algorithm {} not a complete solution'.format(algorithm)

        print '{} solution:'.format(algorithm)
        util.print_solution(solution)

        print 'Elapsed time (seconds): {}'.format(elapsed)

        if best_algorithm is None:
            best_algorithm = algorithm

        if best_solution is None:
            best_solution = solution

        if solution.length() < best_solution.length():
            best_solution = solution
            best_algorithm = algorithm

        print

    print 'Best: {}'.format(best_algorithm)
Beispiel #5
0
def main():
    if len(sys.argv) < 2:  # python main.py <file> <vehicles_number>
        return usage()

    data = data_input.read_file(sys.argv[1])

    vehicles = 99
    timeout = 300

    #clarke_wright_solver = clarke_wright.ClarkeWrightSolver()
    binary_mcscws_solver = binary_mcscws.BinaryMCSCWSSolver()

    start = time.time()
    solution = binary_mcscws_solver.solve(data, vehicles, timeout)
    elapsed = time.time() - start

    routeList = util.print_solution(solution)
    print routeList

    print 'Elapsed time (seconds): {}'.format(elapsed)