Beispiel #1
0
def project_year(model, model_dir, what, scenario, year):
    print("projecting %s for %d using %s" % (what, year, scenario))

    models = select_models(model, model_dir)
    # Read Sam's abundance model (forested and non-forested)
    modf = modelr.load(models[0])
    intercept_f = modf.intercept
    predicts.predictify(modf)

    modn = modelr.load(models[1])
    intercept_n = modn.intercept
    predicts.predictify(modn)

    # Open forested/non-forested mask layer
    fstnf = rasterio.open(utils.luh2_static('fstnf'))

    # Import standard PREDICTS rasters
    rastersf = predicts.rasterset('luh2', scenario, year, 'f')
    rsf = RasterSet(rastersf, mask=fstnf, maskval=0.0)
    rastersn = predicts.rasterset('luh2', scenario, year, 'n')
    rsn = RasterSet(rastersn, mask=fstnf, maskval=1.0)
    #rsn = RasterSet(rastersn)

    if what == 'bii':
        vname = 'bii'
        rsf[vname] = SimpleExpr(
            vname, 'exp(%s) / exp(%f)' % (modf.output, intercept_f))
        rsn[vname] = SimpleExpr(
            vname, 'exp(%s) / exp(%f)' % (modn.output, intercept_n))
        rsf[modf.output] = modf
        rsn[modn.output] = modn
    else:
        vname = modf.output
        assert modf.output == modn.output
        rsf[vname] = modf
        rsn[vname] = modn

    if what not in rsf:
        print('%s not in rasterset' % what)
        print(', '.join(sorted(rsf.keys())))
        sys.exit(1)

    stime = time.time()
    datan, meta = rsn.eval(what, quiet=False)
    dataf, _ = rsf.eval(what, quiet=True)
    data_vals = dataf.filled(0) + datan.filled(0)
    data = data_vals.view(ma.MaskedArray)
    data.mask = np.logical_and(dataf.mask, datan.mask)
    #data = datan
    etime = time.time()
    print("executed in %6.2fs" % (etime - stime))
    oname = '%s/luh2/%s-%s-%d.tif' % (utils.outdir(), scenario, what, year)
    with rasterio.open(oname, 'w', **meta) as dst:
        dst.write(data.filled(meta['nodata']), indexes=1)
    if None:
        fig = plt.figure(figsize=(8, 6))
        ax = plt.gca()
        show(data, cmap='viridis', ax=ax)
        plt.savefig('luh2-%s-%d.png' % (scenario, year))
    return
Beispiel #2
0
def project_year(model, model_dir, what, scenario, year):
    print("projecting %s for %d using %s" % (what, year, scenario))

    models = select_models(model, model_dir)
    # Read Sam's abundance model (forested and non-forested)
    mod = modelr.load(models[0])
    predicts.predictify(mod)

    # Import standard PREDICTS rasters
    by_age = 'young_secondary' in mod.syms
    print('by_age: %s' % str(by_age))
    rasters = predicts.rasterset('luh5', scenario, year, by_age)
    rs = RasterSet(rasters)

    if what == 'bii':
        vname = 'bii'
        rs[vname] = SimpleExpr(vname, '%s / %f' % (mod.output, intercept))
    else:
        vname = mod.output
    rs[vname] = mod

    if what not in rs:
        print('%s not in rasterset' % what)
        print(', '.join(sorted(rs.keys())))
        sys.exit(1)

    stime = time.time()
    data, meta = rs.eval(what, quiet=False)
    etime = time.time()
    print("executed in %6.2fs" % (etime - stime))
    oname = os.path.join(os.environ['OUTDIR'],
                         'luh5/%s-%s-%d.tif' % (scenario, what, year))
    #hpd, _ = rs.eval('hpd', quiet=False)
    #hpd_max, meta2 = rs.eval('hpd_max', quiet=False)
    with rasterio.open(oname, 'w', **meta) as dst:
        #bb = dst.bounds
        #ul = map(int, ~meta2['affine'] * (bb[0], bb[3]))
        #lr = map(int, ~meta2['affine'] * (bb[2], bb[1]))
        #cap = ma.where(hpd > hpd_max[ul[1]:lr[1], ul[0]:lr[0]], True, False)
        #show(hpd, norm=colors.PowerNorm(gamma=0.2))
        #show(cap * 1)
        #data.mask = np.logical_or(data.mask, cap)
        dst.write(data.filled(meta['nodata']), indexes=1)
    if None:
        fig = plt.figure(figsize=(8, 6))
        ax = plt.gca()
        show(data, cmap='viridis', ax=ax)
        plt.savefig('luh2-%s-%d.png' % (scenario, year))
    return
Beispiel #3
0
def project_year(model, model_dir, scenario, year):
    """Run a projection for a single year.  Can be called in parallel when
projecting a range of years.

  """

    print("projecting %s for %d using %s" % (model, year, scenario))

    # Import standard PREDICTS rasters
    rasters = predicts.rasterset('luh2', scenario, year)
    rs = RasterSet(rasters)

    what, model = select_model(model, model_dir)
    # Read Sam's models
    if model:
        mod = modelr.load(model)
        predicts.predictify(mod)
        rs[mod.output] = mod

    if what in ('CompSimAb', 'CompSimSR', 'Abundance', 'Richness'):
        if what in ('CompSimAb', 'CompSimSR'):
            expr = '(inv_logit(%s) - 0.01) / (inv_logit(%f) - 0.01)'
        else:
            expr = '(exp(%s) / exp(%f))'
        rs[what] = SimpleExpr(what, expr % (mod.output, mod.intercept))

    if what not in rs:
        print('%s not in rasterset' % what)
        print(', '.join(sorted(rs.keys())))
        sys.exit(1)

    stime = time.time()
    data, meta = rs.eval(what, quiet=True)
    etime = time.time()
    print("executed in %6.2fs" % (etime - stime))
    oname = '%s/luh2/%s-%s-%04d.tif' % (utils.outdir(), scenario, what, year)
    with rasterio.open(oname, 'w', **meta) as dst:
        dst.write(data.filled(meta['nodata']), indexes=1)
    if None:
        fig = plt.figure(figsize=(8, 6))
        show(data, cmap='viridis', ax=plt.gca())
        fig.savefig('luh2-%s-%d.png' % (scenario, year))
    return
Beispiel #4
0
shp_file = os.path.join(os.environ['DATA_ROOT'],
                        'from-adriana/tropicalforests.shp')
shapes = fiona.open(shp_file)

# Read Adriana's abundance model (mainland)
mod = modelr.load(os.path.join(os.environ['MODEL_DIR'], 'ab-model.rds'))
predicts.predictify(mod)

# Import standard PREDICTS rasters
rasters = predicts.rasterset('luh5', 'historical', 1990, True)
rs = RasterSet(rasters, shapes=shapes, all_touched=True)

what = mod.output
rs[mod.output] = mod
stime = time.time()
data1, meta_data1 = rs.eval(what)
etime = time.time()
print("executed in %6.2fs" % (etime - stime))
show(data1)

##
## Compare with good raster
##
out = rasterio.open('adrid-good.tif')
good = out.read(1, masked=True)
diff = np.fabs(data1 - good)
print("max diff: %f" % diff.max())
assert np.allclose(data1, good, atol=1e-05, equal_nan=True)
del out

##
#!/usr/bin/env python

from projections.atlas import atlas
from projections.rasterset import RasterSet, Raster
import projections.predicts as predicts
import projections.rds as rds

# Read Katia's abundance model (mainland)
mod = rds.read('../models/ab-mainland.rds')
predicts.predictify(mod)

# Import standard PREDICTS rasters
rasters = predicts.rasterset('rcp', 'aim', 2020, 'medium')
rs = RasterSet(rasters)

rs[mod.output()] = mod
data = rs.eval(mod.output())

# Display the raster
atlas(data, mod.output(), 'viridis')
Beispiel #6
0
import matplotlib.pyplot as plt
from rasterio.plot import show, show_hist

from projections.atlas import atlas
from projections.rasterset import RasterSet, Raster
from projections.simpleexpr import SimpleExpr
import projections.predicts as predicts
import projections.rds as rds

# Import standard PREDICTS rasters
rasters = predicts.rasterset('rcp', 'aim', 2020, 'medium')
rs = RasterSet(rasters)
rs['logHPD_rs2'] = SimpleExpr('logHPD_rs', 'scale(log(hpd + 1), 0.0, 1.0)')

data1 = rs.eval('logHPD_rs')
data2 = rs.eval('logHPD_rs2')
data3 = np.where(np.isclose(data1, data2, equal_nan=True), 1, 0)
diff = np.fabs(data1 - data2)
print("max diff %f" % diff.max())

print("max in hpd_ref: %f" % rs['hpd_ref'].data.values.max())
print("max in hpd: %f" % rs['hpd'].data.dropna().values.max())

fig, ((ax1, ax2, ax3), (hx1, hx2, hx3)) = plt.subplots(2, 3, figsize=(21, 7))
show(data1, ax=ax1, cmap='Greens', title='Global max/min')
show(data2, ax=ax2, cmap='Greens', title='Computed max/min')
show(diff, ax=ax3, cmap='viridis', title='Difference', vmin=0, vmax=1.0)
show_hist(data1, ax=hx1, histtype='stepfilled')
show_hist(data2, ax=hx2, histtype='stepfilled')
show_hist(diff, ax=hx3, histtype='stepfilled')