Beispiel #1
0
def lyot_stop(wf, mode='RAVC', ravc_r=0.6, ls_dRext=0.03, ls_dRint=0.05, 
        ls_dRspi=0.04, spi_width=0.5, spi_angles=[0,60,120], diam_ext=37, 
        diam_int=11, ls_misalign=None, file_app_phase='', file_app_amp='', 
        ngrid=1024, npupil=285, margin=50, get_amp=False, 
        get_phase=False, verbose=False, **conf):

    """Add a Lyot stop, or an APP."""
    
    # case 1: Lyot stop
    if mode in ['CVC', 'RAVC']:
        # LS parameters
        r_obstr = ravc_r if mode in ['RAVC'] else diam_int/diam_ext
        ls_int = r_obstr + ls_dRint
        ls_ext = 1 - ls_dRext
        ls_spi = spi_width/diam_ext + ls_dRspi
        # LS misalignments
        ls_misalign = [0,0,0,0,0,0] if ls_misalign is None else list(ls_misalign)
        dx_amp, dy_amp, dz_amp = ls_misalign[0:3]
        dx_phase, dy_phase, dz_phase = ls_misalign[3:6]
        # create Lyot stop
        proper.prop_circular_aperture(wf, ls_ext, dx_amp, dy_amp, NORM=True)
        if diam_int > 0:
            proper.prop_circular_obscuration(wf, ls_int, dx_amp, dy_amp, NORM=True)
        if spi_width > 0:
            for angle in spi_angles:
                proper.prop_rectangular_obscuration(wf, ls_spi, 2, \
                        dx_amp, dy_amp, ROTATION=angle, NORM=True)
        if verbose is True:
            print('Create Lyot stop')
            print('   ls_int=%3.4f, ls_ext=%3.4f, ls_spi=%3.4f'\
                %(ls_int, ls_ext, ls_spi))
            print('')

    # case 2: APP
    elif mode in ['APP']:
        if verbose is True:
            print('Load APP from files\n')
        # get amplitude and phase data
        APP_amp = fits.getdata(file_app_amp) if os.path.isfile(file_app_amp) \
                else np.ones((npupil, npupil))
        APP_phase = fits.getdata(file_app_phase) if os.path.isfile(file_app_phase) \
                else np.zeros((npupil, npupil))
        # resize to npupil
        APP_amp = impro.resize_img(APP_amp, npupil)
        APP_phase = impro.resize_img(APP_phase, npupil)
        # pad with zeros to match PROPER ngrid
        APP_amp = impro.pad_img(APP_amp, ngrid, 1)
        APP_phase = impro.pad_img(APP_phase, ngrid, 0)
        # multiply the loaded APP
        proper.prop_multiply(wf, APP_amp*np.exp(1j*APP_phase))
    
    # get the LS amplitude and phase for output
    LS_amp = impro.crop_img(proper.prop_get_amplitude(wf), npupil, margin)\
            if get_amp is True else None
    LS_phase = impro.crop_img(proper.prop_get_phase(wf), npupil, margin)\
            if get_phase is True else None
    
    return wf, LS_amp, LS_phase
Beispiel #2
0
def add_spiders(wfo, diam):
    # print 'Including Spiders'
    proper.prop_circular_obscuration(wfo, (diam / 3) / 2.5)
    proper.prop_rectangular_obscuration(wfo,
                                        0.05 * diam,
                                        diam * 1.3,
                                        ROTATION=10)
    proper.prop_rectangular_obscuration(wfo,
                                        diam * 1.3,
                                        0.05 * diam,
                                        ROTATION=10)
Beispiel #3
0
def SubaruPupil(wf):
    """
    adds Subaru pupil mask to the optical train

    :param wf: 2D proper wavefront
    :return: acts upon wfo, applies a spatial mask of s=circular secondary obscuration and possibly spider legs
    """
    # dprint('Applying Subaru Pupil')

    # M2 shadow
    proper.prop_circular_obscuration(wf, 14 / 46, NORM=True)
    # Legs
    proper.prop_rectangular_obscuration(wf,
                                        1.2,
                                        2 / 46,
                                        .5,
                                        -.375,
                                        ROTATION=-50,
                                        NORM=True)
    proper.prop_rectangular_obscuration(wf,
                                        1.2,
                                        2 / 46,
                                        .5,
                                        .375,
                                        ROTATION=50,
                                        NORM=True)
    proper.prop_rectangular_obscuration(wf,
                                        1.2,
                                        2 / 46,
                                        -.5,
                                        -.375,
                                        ROTATION=50,
                                        NORM=True)
    proper.prop_rectangular_obscuration(wf,
                                        1.2,
                                        2 / 46,
                                        -.5,
                                        .375,
                                        ROTATION=-50,
                                        NORM=True)
    proper.prop_rectangular_obscuration(wf,
                                        1,
                                        1 / 46,
                                        .05,
                                        .45,
                                        ROTATION=-50,
                                        NORM=True)
    # Misc Spots
    proper.prop_circular_obscuration(wf, .075, -.1, 0.6, NORM=True)
    proper.prop_circular_obscuration(wf, .075, .5, -.375, NORM=True)
Beispiel #4
0
def lyot_stop(wf, mode='RAVC', ravc_r=0.6, ls_dRext=0.03, ls_dRint=0.05, 
        ls_dRspi=0.04, spi_width=0.5, spi_angles=[0,60,120], diam_ext=37, 
        diam_int=11, diam_nominal=37, ls_misalign=None, ngrid=1024, npupil=285, 
        file_lyot_stop='', verbose=False, **conf):

    """ Add a Lyot stop for a focal plane mask """
    
    if mode in ['CVC', 'RAVC', 'CLC']:

        # load lyot stop from file if provided
        if os.path.isfile(file_lyot_stop):
            if verbose is True:
                print("   apply lyot stop from '%s'"%os.path.basename(file_lyot_stop))
            # get amplitude and phase data
            ls_mask = fits.getdata(file_lyot_stop)
            # resize to npupil
            ls_mask = resize_img(ls_mask, npupil)
            # pad with zeros and add to wavefront
            proper.prop_multiply(wf, pad_img(ls_mask, ngrid))

        # if no lyot stop, create one
        else:
            # scale nominal values to pupil external diameter
            scaling = diam_nominal/diam_ext
            # LS parameters
            r_obstr = ravc_r if mode in ['RAVC'] else diam_int/diam_ext
            ls_int = r_obstr + ls_dRint*scaling
            ls_ext = 1 - ls_dRext*scaling
            ls_spi = spi_width/diam_ext + ls_dRspi*scaling
            # LS misalignments
            ls_misalign = [0,0,0,0,0,0] if ls_misalign is None else list(ls_misalign)
            dx_amp, dy_amp, dz_amp = ls_misalign[0:3]
            dx_phase, dy_phase, dz_phase = ls_misalign[3:6]
            # create Lyot stop
            proper.prop_circular_aperture(wf, ls_ext, dx_amp, dy_amp, NORM=True)
            if diam_int > 0:
                proper.prop_circular_obscuration(wf, ls_int, dx_amp, dy_amp, NORM=True)
            if spi_width > 0:
                for angle in spi_angles:
                    proper.prop_rectangular_obscuration(wf, 2*ls_spi, 2, \
                            dx_amp, dy_amp, ROTATION=angle, NORM=True)
            if verbose is True:
                print('   apply Lyot stop: ls_int=%s, ls_ext=%s, ls_spi=%s'\
                    %(round(ls_int, 4), round(ls_ext, 4), round(ls_spi, 4)))
    
    return wf
Beispiel #5
0
def add_obscurations(wf,
                     M2_frac=0,
                     d_primary=0,
                     d_secondary=0,
                     legs_frac=0.05,
                     plane_name=None):
    """
    adds central obscuration (secondary shadow) and/or spider legs as spatial mask to the wavefront

    :param wf: 2D proper wavefront
    :param M2_frac: ratio of tp.diam the M2 occupies
    :param d_primary: diameter of the primary mirror
    :param d_secondary: diameter of the secondary mirror
    :param legs_frac: fractional size of spider legs relative to d_primary
    :return: acts upon wfo, applies a spatial mask of s=circular secondary obscuration and possibly spider legs
    """
    if tp.obscure is False:
        pass
    else:
        # dprint('Including Obscurations')
        if M2_frac > 0 and d_primary > 0:
            proper.prop_circular_obscuration(wf, M2_frac * d_primary)
        elif d_secondary > 0:
            proper.prop_circular_obscuration(wf, d_secondary)
        else:
            raise ValueError(
                'must either specify M2_frac and d_primary or d_secondary')
        if legs_frac > 0:
            proper.prop_rectangular_obscuration(wf,
                                                legs_frac * d_primary,
                                                d_primary * 1.3,
                                                ROTATION=20)
            proper.prop_rectangular_obscuration(wf,
                                                d_primary * 1.3,
                                                legs_frac * d_primary,
                                                ROTATION=20)
Beispiel #6
0
def lyotstop(wf, conf, RAVC):
    input_dir = conf['INPUT_DIR']
    diam = conf['DIAM']
    npupil = conf['NPUPIL']
    spiders_angle = conf['SPIDERS_ANGLE']
    r_obstr = conf['R_OBSTR']
    Debug = conf['DEBUG']
    Debug_print = conf['DEBUG_PRINT']
    LS_amplitude_apodizer_file = conf['AMP_APODIZER']
    LS_misalignment = np.array(conf['LS_MIS_ALIGN'])
    if conf['PHASE_APODIZER_FILE'] == 0:
        LS_phase_apodizer_file = 0
    else:
        LS_phase_apodizer_file = fits.getdata(input_dir + '/' +
                                              conf['PHASE_APODIZER_FILE'])
    LS = conf['LYOT_STOP']
    LS_parameters = np.array(conf['LS_PARA'])
    n = proper.prop_get_gridsize(wf)
    if (RAVC == True):  # define the inner radius of the Lyot Stop
        t1_opt = 1. - 1. / 4 * (
            r_obstr**2 + r_obstr * (math.sqrt(r_obstr**2 + 8.))
        )  # define the apodizer transmission [Mawet2013]
        R1_opt = (r_obstr / math.sqrt(1. - t1_opt)
                  )  # define teh apodizer radius [Mawet2013]
        r_LS = R1_opt + LS_parameters[
            1]  # when a Ring apodizer is present, the inner LS has to have at least the value of the apodizer radius
    else:
        r_LS = r_obstr + LS_parameters[
            1]  # when no apodizer, the LS has to have at least the radius of the pupil central obstruction
    if LS == True:  # apply the LS
        if (Debug_print == True):
            print("LS parameters: ", LS_parameters)
        proper.prop_circular_aperture(wf,
                                      LS_parameters[0],
                                      LS_misalignment[0],
                                      LS_misalignment[1],
                                      NORM=True)
        proper.prop_circular_obscuration(wf,
                                         r_LS,
                                         LS_misalignment[0],
                                         LS_misalignment[1],
                                         NORM=True)
        if (LS_parameters[2] != 0):
            for iter in range(0, len(spiders_angle)):
                if (Debug_print == True):
                    print("LS_misalignment: ", LS_misalignment)
                proper.prop_rectangular_obscuration(
                    wf,
                    LS_parameters[2],
                    2 * diam,
                    LS_misalignment[0],
                    LS_misalignment[1],
                    ROTATION=spiders_angle[iter])  # define the spiders
        if (Debug == True):
            out_dir = str('./output_files/')
            fits.writeto(
                out_dir + '_Lyot_stop.fits',
                proper.prop_get_amplitude(wf)[int(n / 2) -
                                              int(npupil / 2 + 50):int(n / 2) +
                                              int(npupil / 2 + 50),
                                              int(n / 2) -
                                              int(npupil / 2 + 50):int(n / 2) +
                                              int(npupil / 2 + 50)],
                overwrite=True)

    if (isinstance(LS_phase_apodizer_file, (list, tuple, np.ndarray)) == True):
        xc_pixels = int(LS_misalignment[3] * npupil)
        yc_pixels = int(LS_misalignment[4] * npupil)
        apodizer_pixels = (LS_phase_apodizer_file.shape)[0]  ## fits file size
        scaling_factor = float(npupil) / float(
            apodizer_pixels
        )  ## scaling factor between the fits file size and the pupil size of the simulation

        #        scaling_factor = float(npupil)/float(pupil_pixels) ## scaling factor between the fits file size and the pupil size of the simulation
        if (Debug_print == True):
            print("scaling_factor: ", scaling_factor)
        apodizer_scale = cv2.resize(
            LS_phase_apodizer_file.astype(np.float32), (0, 0),
            fx=scaling_factor,
            fy=scaling_factor,
            interpolation=cv2.INTER_LINEAR
        )  # scale the pupil to the pupil size of the simualtions
        if (Debug_print == True):
            print("apodizer_resample", apodizer_scale.shape)
        apodizer_large = np.zeros(
            (n, n))  # define an array of n-0s, where to insert the pupuil
        if (Debug_print == True):
            print("npupil: ", npupil)
        apodizer_large[
            int(n / 2) + 1 - int(npupil / 2) - 1 + xc_pixels:int(n / 2) + 1 +
            int(npupil / 2) + xc_pixels,
            int(n / 2) + 1 - int(npupil / 2) - 1 + yc_pixels:int(n / 2) + 1 +
            int(npupil / 2) +
            yc_pixels] = apodizer_scale  # insert the scaled pupil into the 0s grid
        phase_multiply = np.array(np.zeros((n, n)),
                                  dtype=complex)  # create a complex array
        phase_multiply.imag = apodizer_large  # define the imaginary part of the complex array as the atm screen
        apodizer = np.exp(phase_multiply)
        proper.prop_multiply(wf, apodizer)
        if (Debug == True):
            fits.writeto('LS_apodizer.fits',
                         proper.prop_get_phase(wf),
                         overwrite=True)

    if (isinstance(LS_amplitude_apodizer_file,
                   (list, tuple, np.ndarray)) == True):
        print('4th')
        xc_pixels = int(LS_misalignment[0] * npupil)
        yc_pixels = int(LS_misalignment[1] * npupil)
        apodizer_pixels = (
            LS_amplitude_apodizer_file.shape)[0]  ## fits file size
        scaling_factor = float(npupil) / float(
            pupil_pixels
        )  ## scaling factor between the fits file size and the pupil size of the simulation
        if (Debug_print == True):
            print("scaling_factor: ", scaling_factor)
            apodizer_scale = cv2.resize(
                amplitude_apodizer_file.astype(np.float32), (0, 0),
                fx=scaling_factor,
                fy=scaling_factor,
                interpolation=cv2.INTER_LINEAR
            )  # scale the pupil to the pupil size of the simualtions
        if (Debug_print == True):
            print("apodizer_resample", apodizer_scale.shape)
        apodizer_large = np.zeros(
            (n, n))  # define an array of n-0s, where to insert the pupuil
        if (Debug_print == True):
            print("grid_size: ", n)
            print("npupil: ", npupil)
        apodizer_large[
            int(n / 2) + 1 - int(npupil / 2) - 1 + xc_pixels:int(n / 2) + 1 +
            int(npupil / 2) + xc_pixels,
            int(n / 2) + 1 - int(npupil / 2) - 1 + yc_pixels:int(n / 2) + 1 +
            int(npupil / 2) +
            yc_pixels] = apodizer_scale  # insert the scaled pupil into the 0s grid
        apodizer = apodizer_large
        proper.prop_multiply(wf, apodizer)
        if (Debug == True):
            fits.writeto('LS_apodizer.fits',
                         proper.prop_get_amplitude(wf),
                         overwrite=True)

    return wf
Beispiel #7
0
    def lyotstop(self, wf, RAVC=None, APP=None, get_pupil='no', dnpup=50):
        """Add a Lyot stop, or an APP."""

        # load parameters
        npupil = 1  #conf['NPUPIL']
        pad = int((210 - npupil) / 2)

        # get LS misalignments
        LS_misalignment = (np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0]) *
                           npupil).astype(int)
        dx_amp, dy_amp, dz_amp = LS_misalignment[0:3]
        dx_phase, dy_phase, dz_phase = LS_misalignment[3:6]

        # case 1: Lyot stop (no APP)
        if APP is not True:

            # Lyot stop parameters: R_out, dR_in, spi_width
            # outer radius (absolute %), inner radius (relative %), spider width (m)
            (R_out, dR_in, spi_width) = [0.98, 0.03, 0]

            # Lyot stop inner radius at least as large as obstruction radius
            R_in = 0.15

            # case of a ring apodizer
            if RAVC is True:
                # define the apodizer transmission and apodizer radius [Mawet2013]
                # apodizer radius at least as large as obstruction radius
                T_ravc = 1 - (R_in**2 + R_in * np.sqrt(R_in**2 + 8)) / 4
                R_in /= np.sqrt(1 - T_ravc)

            # oversize Lyot stop inner radius
            R_in += dR_in

            # create Lyot stop
            proper.prop_circular_aperture(wf, R_out, dx_amp, dy_amp, NORM=True)
            if R_in > 0:
                proper.prop_circular_obscuration(wf,
                                                 R_in,
                                                 dx_amp,
                                                 dy_amp,
                                                 NORM=True)
            if spi_width > 0:
                for angle in [10]:
                    proper.prop_rectangular_obscuration(wf,
                                                        0.05 * 8,
                                                        8 * 1.3,
                                                        ROTATION=20)
                    proper.prop_rectangular_obscuration(wf,
                                                        8 * 1.3,
                                                        0.05 * 8,
                                                        ROTATION=20)
                    # proper.prop_rectangular_obscuration(wf, spi_width, 2 * 8, \
                    #                                     dx_amp, dy_amp, ROTATION=angle)

        # case 2: APP (no Lyot stop)
        else:
            # get amplitude and phase files
            APP_amp_file = os.path.join(conf['INPUT_DIR'],
                                        conf['APP_AMP_FILE'])
            APP_phase_file = os.path.join(conf['INPUT_DIR'],
                                          conf['APP_PHASE_FILE'])
            # get amplitude and phase data
            APP_amp = getdata(APP_amp_file) if os.path.isfile(APP_amp_file) \
                else np.ones((npupil, npupil))
            APP_phase = getdata(APP_phase_file) if os.path.isfile(APP_phase_file) \
                else np.zeros((npupil, npupil))
            # resize to npupil
            APP_amp = resize(APP_amp, (npupil, npupil),
                             preserve_range=True,
                             mode='reflect')
            APP_phase = resize(APP_phase, (npupil, npupil),
                               preserve_range=True,
                               mode='reflect')
            # pad with zeros to match PROPER gridsize
            APP_amp = np.pad(APP_amp, [(pad + 1 + dx_amp, pad - dx_amp), \
                                       (pad + 1 + dy_amp, pad - dy_amp)], mode='constant')
            APP_phase = np.pad(APP_phase, [(pad + 1 + dx_phase, pad - dx_phase), \
                                           (pad + 1 + dy_phase, pad - dy_phase)], mode='constant')
            # multiply the loaded APP
            proper.prop_multiply(wf, APP_amp * np.exp(1j * APP_phase))

        # get the pupil amplitude or phase for output
        if get_pupil.lower() in 'amplitude':
            return wf, proper.prop_get_amplitude(wf)[pad + 1 - dnpup:-pad +
                                                     dnpup, pad + 1 -
                                                     dnpup:-pad + dnpup]
        elif get_pupil.lower() in 'phase':
            return wf, proper.prop_get_phase(wf)[pad + 1 - dnpup:-pad + dnpup,
                                                 pad + 1 - dnpup:-pad + dnpup]
        else:
            return wf
Beispiel #8
0
def pupil(diam,
          gridsize,
          spiders_width,
          spiders_angle,
          pixelsize,
          r_obstr,
          wavelength,
          pupil_file,
          missing_segments_number=0,
          Debug='False',
          Debug_print='False',
          prefix='test'):

    beam_ratio = pixelsize * 4.85e-9 / (wavelength / diam)
    wfo = proper.prop_begin(diam, wavelength, gridsize, beam_ratio)
    n = int(gridsize)
    npupil = np.ceil(
        gridsize * beam_ratio
    )  # compute the pupil size --> has to be ODD (proper puts the center in the up right pixel next to the grid center)
    if npupil % 2 == 0:
        npupil = npupil + 1

    if (Debug_print == True):
        print("npupil: ", npupil)
        print("lambda: ", wavelength)

    if (missing_segments_number == 0):
        if (isinstance(pupil_file, (list, tuple, np.ndarray)) == True):
            pupil = pupil_file
            pupil_pixels = (pupil.shape)[0]  ## fits file size
            scaling_factor = float(npupil) / float(
                pupil_pixels
            )  ## scaling factor between the fits file size and the pupil size of the simulation
            if (Debug_print == True):
                print("scaling_factor: ", scaling_factor)
            pupil_scale = cv2.resize(
                pupil.astype(np.float32), (0, 0),
                fx=scaling_factor,
                fy=scaling_factor,
                interpolation=cv2.INTER_LINEAR
            )  # scale the pupil to the pupil size of the simualtions
            if (Debug_print == True):
                print("pupil_resample", pupil_scale.shape)
            pupil_large = np.zeros(
                (n, n))  # define an array of n-0s, where to insert the pupuil
            if (Debug_print == True):
                print("n: ", n)
                print("npupil: ", npupil)
            pupil_large[
                int(n / 2) + 1 - int(npupil / 2) - 1:int(n / 2) + 1 +
                int(npupil / 2),
                int(n / 2) + 1 - int(npupil / 2) - 1:int(n / 2) + 1 +
                int(npupil / 2
                    )] = pupil_scale  # insert the scaled pupil into the 0s grid

        proper.prop_circular_aperture(
            wfo, diam / 2)  # create a wavefront with a circular pupil

        if (isinstance(pupil_file, (list, tuple, np.ndarray)) == True):
            proper.prop_multiply(wfo, pupil_large)  # multiply the saved pupil
        else:
            proper.prop_circular_obscuration(
                wfo, r_obstr, NORM=True
            )  # create a wavefront with a circular central obscuration
        if (spiders_width != 0):
            for iter in range(0, len(spiders_angle)):
                proper.prop_rectangular_obscuration(
                    wfo, spiders_width, 2 * diam,
                    ROTATION=spiders_angle[iter])  # define the spiders
    else:
        if (missing_segments_number == 1):
            pupil = fits.getdata(
                input_dir +
                '/ELT_2048_37m_11m_5mas_nospiders_1missing_cut.fits')
        if (missing_segments_number == 2):
            pupil = fits.getdata(
                input_dir +
                '/ELT_2048_37m_11m_5mas_nospiders_2missing_cut.fits')
        if (missing_segments_number == 4):
            pupil = fits.getdata(
                input_dir +
                '/ELT_2048_37m_11m_5mas_nospiders_4missing_cut.fits')
        if (missing_segments_number == 7):
            pupil = fits.getdata(
                input_dir +
                '/ELT_2048_37m_11m_5mas_nospiders_7missing_1_cut.fits')

        pupil_pixels = (pupil.shape)[0]  ## fits file size
        scaling_factor = float(npupil) / float(
            pupil_pixels
        )  ## scaling factor between the fits file size and the pupil size of the simulation
        if (Debug_print == True):
            print("scaling_factor: ", scaling_factor)
        pupil_scale = cv2.resize(
            pupil.astype(np.float32), (0, 0),
            fx=scaling_factor,
            fy=scaling_factor,
            interpolation=cv2.INTER_LINEAR
        )  # scale the pupil to the pupil size of the simualtions
        if (Debug_print == True):
            print("pupil_resample", pupil_scale.shape)
        pupil_large = np.zeros(
            (n, n))  # define an array of n-0s, where to insert the pupuil
        if (Debug_print == True):
            print("n: ", n)
            print("npupil: ", npupil)
        pupil_large[
            int(n / 2) + 1 - int(npupil / 2) - 1:int(n / 2) + 1 +
            int(npupil / 2),
            int(n / 2) + 1 - int(npupil / 2) - 1:int(n / 2) + 1 +
            int(npupil /
                2)] = pupil_scale  # insert the scaled pupil into the 0s grid

        proper.prop_multiply(wfo, pupil_large)  # multiply the saved pupil
        if (spiders_width != 0):
            for iter in range(0, len(spiders_angle)):
                proper.prop_rectangular_obscuration(
                    wfo, spiders_width, 2 * diam,
                    ROTATION=spiders_angle[iter])  # define the spiders

    if (Debug == True):
        fits.writeto(
            out_dir + prefix + '_intial_pupil.fits',
            proper.prop_get_amplitude(wfo)[int(n / 2) -
                                           int(npupil / 2 + 50):int(n / 2) +
                                           int(npupil / 2 + 50),
                                           int(n / 2) -
                                           int(npupil / 2 + 50):int(n / 2) +
                                           int(npupil / 2 + 50)],
            overwrite=True)

    proper.prop_define_entrance(wfo)  #define the entrance wavefront
    wfo.wfarr *= 1. / np.amax(wfo._wfarr)  # max(amplitude)=1
    return (npupil, wfo)
Beispiel #9
0
def create_pupil(nhr=2**10,
                 npupil=285,
                 pupil_img_size=40,
                 diam_ext=37,
                 diam_int=11,
                 spi_width=0.5,
                 spi_angles=[0, 60, 120],
                 seg_width=0,
                 seg_gap=0,
                 seg_rms=0,
                 seg_ny=[
                     10, 13, 16, 19, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
                     30, 31, 30, 31, 30, 31, 30, 31, 30, 29, 28, 27, 26, 25,
                     24, 23, 22, 19, 16, 13, 10
                 ],
                 seg_missing=[],
                 seed=123456,
                 **conf):
    ''' Create a pupil.
    
    Args:
        nhr: int
            high resolution grid
        npupil: int
            number of pixels of the pupil
        pupil_img_size: float
            pupil image (for PROPER) in m
        diam_ext: float
            outer circular aperture in m
        diam_int: float
            central obscuration in m
        spi_width: float
            spider width in m
        spi_angles: list of float
            spider angles in deg
        seg_width: float
            segment width in m
        seg_gap: float
            gap between segments in m
        seg_rms: float
            rms of the reflectivity of all segments
        seg_ny: list of int
            number of hexagonal segments per column (from left to right)
        seg_missing: list of tupples
            coordinates of missing segments
    
    '''

    # create a high res pupil with PROPER of even size (nhr)
    nhr_size = pupil_img_size * nhr / (nhr - 1)
    wf_tmp = proper.prop_begin(nhr_size, 1, nhr, diam_ext / nhr_size)
    if diam_ext > 0:
        proper.prop_circular_aperture(wf_tmp, 1, NORM=True)
    if diam_int > 0:
        proper.prop_circular_obscuration(wf_tmp,
                                         diam_int / diam_ext,
                                         NORM=True)
    if spi_width > 0:
        for angle in spi_angles:
            proper.prop_rectangular_obscuration(wf_tmp, spi_width/nhr_size, 2, \
                ROTATION=angle, NORM=True)
    pup = proper.prop_get_amplitude(wf_tmp)
    # crop the pupil to odd size (nhr-1), and resize to npupil
    pup = pup[1:, 1:]
    pup = resize_img(pup, npupil)
    # add segments
    if seg_width > 0:
        segments = np.zeros((nhr, nhr))
        # sampling in meters/pixel
        sampling = pupil_img_size / nhr
        # dist between center of two segments, side by side
        seg_d = seg_width * np.cos(np.pi / 6) + seg_gap
        # segment radius
        seg_r = seg_width / 2
        # segment radial distance wrt x and y axis
        seg_ny = np.array(seg_ny)
        seg_nx = len(seg_ny)
        seg_rx = np.arange(seg_nx) - (seg_nx - 1) / 2
        seg_ry = (seg_ny - 1) / 2
        # loop through segments
        np.random.seed(seed)
        for i in range(seg_nx):
            seg_x = seg_rx[i] * seg_d * np.cos(np.pi / 6)
            seg_y = -seg_ry[i] * seg_d
            for j in range(1, seg_ny[i] + 1):
                # removes secondary and if any missing segment is present
                if (np.sqrt(seg_x**2 + seg_y**2) <= 4.01*seg_d) \
                        or ((seg_rx[i], j) in seg_missing):
                    seg_y += seg_d
                else:
                    # creates one hexagonal segment at x, y position in meters
                    segment = create_hexagon(nhr, seg_r, seg_y, seg_x,
                                             sampling)
                    # multiply by segment reflectivity and add to segments
                    seg_refl = np.random.normal(1, seg_rms)
                    segments += segment * seg_refl
                    seg_y += seg_d
        # need to transpose, due to the orientation of hexagons in create_hexagon
        segments = segments.T
        # resize to npupil, and add to pupil
        segments = resize_img(segments, npupil)
        pup *= segments

    return pup
Beispiel #10
0
def falco_gen_pupil_WFIRSTcycle6_LS(Nbeam,
                                    Dbeam,
                                    ID,
                                    OD,
                                    strut_width,
                                    centering,
                                    rot180deg=False):
    strut_width = strut_width * Dbeam  # now in meters
    dx = Dbeam / Nbeam

    clock_deg = 0
    magfacD = 1
    xshift = 0
    yshift = 0
    pad_strut = 0
    Dmask = Dbeam  # % width of the beam (so can have zero padding if LS is undersized) (meters)
    diam = Dmask  # width of the mask (meters)
    # minimum even number of points across to fully contain the actual aperture (if interpixel centered)
    NapAcross = Dmask / dx

    wf = _init_proper(Dmask, dx, centering)

    # 0 shift for pixel-centered pupil, or -dx shift for inter-pixel centering
    if centering == "interpixel":
        cshift = -dx / 2
    elif rot180deg:
        cshift = -dx
    else:
        cshift = 0

    # DATA FROM THE VISIO FILE
    D0 = 8  # inches, pupil diameter in Visio file
    x0 = -26  # inches, pupil center in x in Visio file
    y0 = 20.25  # inches, pupil center in y in Visio file
    Dconv = diam / D0  # conversion factor from inches and Visio units to meters

    # PRIMARY MIRROR (OUTER DIAMETER)
    ra_OD = (Dbeam * OD / 2) * magfacD
    cx_OD = cshift + xshift
    cy_OD = cshift + yshift
    proper.prop_circular_aperture(wf, ra_OD, cx_OD, cy_OD)

    # SECONDARY MIRROR (INNER DIAMETER)
    ra_ID = (Dbeam * ID / 2) * magfacD
    cx_ID = cshift + xshift
    cy_ID = cshift + yshift
    proper.prop_circular_obscuration(wf, ra_ID, cx_ID, cy_ID)

    sx_s = magfacD * (3.6 * (diam / D0) + pad_strut)
    sy_s = magfacD * (strut_width + pad_strut)
    clock_rot = np.array(
        [[np.cos(np.radians(clock_deg)), -np.sin(np.radians(clock_deg))],
         [np.sin(np.radians(clock_deg)),
          np.cos(np.radians(clock_deg))]])

    def _get_strut_cxy(x, y):
        cx_s = (x - x0) * Dconv
        cy_s = (y - y0) * Dconv
        cxy = magfacD * clock_rot.dot([cx_s, cy_s]) + cshift
        return cxy + [xshift, yshift]

    # STRUT 1
    rot_s1 = 77.56 + clock_deg  # degrees
    cx_s1, cy_s1 = _get_strut_cxy(-24.8566, 22.2242)
    proper.prop_rectangular_obscuration(wf,
                                        sx_s,
                                        sy_s,
                                        cx_s1,
                                        cy_s1,
                                        ROTATION=rot_s1)

    # STRUT 2
    rot_s2 = -17.56 + clock_deg  # degrees
    cx_s2, cy_s2 = _get_strut_cxy(-23.7187, 20.2742)
    proper.prop_rectangular_obscuration(wf,
                                        sx_s,
                                        sy_s,
                                        cx_s2,
                                        cy_s2,
                                        ROTATION=rot_s2)

    # STRUT 3
    rot_s3 = -42.44 + clock_deg  # degrees
    cx_s3, cy_s3 = _get_strut_cxy(-24.8566, 18.2758)
    proper.prop_rectangular_obscuration(wf,
                                        sx_s,
                                        sy_s,
                                        cx_s3,
                                        cy_s3,
                                        ROTATION=rot_s3)

    # STRUT 4
    rot_s4 = 42.44 + clock_deg  # degrees
    cx_s4, cy_s4 = _get_strut_cxy(-27.1434, 18.2758)
    proper.prop_rectangular_obscuration(wf,
                                        sx_s,
                                        sy_s,
                                        cx_s4,
                                        cy_s4,
                                        ROTATION=rot_s4)

    # STRUT 5
    rot_s5 = 17.56 + clock_deg  # degrees
    cx_s5, cy_s5 = _get_strut_cxy(-28.2813, 20.2742)
    proper.prop_rectangular_obscuration(wf,
                                        sx_s,
                                        sy_s,
                                        cx_s5,
                                        cy_s5,
                                        ROTATION=rot_s5)

    # STRUT 6
    rot_s6 = 102.44 + clock_deg  # degrees
    cx_s6, cy_s6 = _get_strut_cxy(-27.1434, 22.2242)
    proper.prop_rectangular_obscuration(wf,
                                        sx_s,
                                        sy_s,
                                        cx_s6,
                                        cy_s6,
                                        ROTATION=rot_s6)

    mask = np.fft.ifftshift(np.abs(wf.wfarr))

    if rot180deg:
        mask = np.rot90(mask, 2)

    return mask
Beispiel #11
0
def pupil(wfo, CAL, npupil, diam, r_obstr, spiders_width, spiders_angle,
          pupil_file, missing_segments_number, Debug, Debug_print):

    n = int(proper.prop_get_gridsize(wfo))

    if (missing_segments_number == 0):
        if (isinstance(pupil_file, (list, tuple, np.ndarray)) == True):
            pupil = pupil_file
            pupil_pixels = (pupil.shape)[0]  ## fits file size
            scaling_factor = float(npupil) / float(
                pupil_pixels
            )  ## scaling factor between the fits file size and the pupil size of the simulation
            if (Debug_print == True):
                print("scaling_factor: ", scaling_factor)
            pupil_scale = cv2.resize(
                pupil.astype(np.float32), (0, 0),
                fx=scaling_factor,
                fy=scaling_factor,
                interpolation=cv2.INTER_LINEAR
            )  # scale the pupil to the pupil size of the simualtions
            if (Debug_print == True):
                print("pupil_resample", pupil_scale.shape)
            pupil_large = np.zeros(
                (n, n))  # define an array of n-0s, where to insert the pupuil
            if (Debug_print == True):
                print("n: ", n)
                print("npupil: ", npupil)
            pupil_large[
                int(n / 2) + 1 - int(npupil / 2) - 1:int(n / 2) + 1 +
                int(npupil / 2),
                int(n / 2) + 1 - int(npupil / 2) - 1:int(n / 2) + 1 +
                int(npupil / 2
                    )] = pupil_scale  # insert the scaled pupil into the 0s grid

        proper.prop_circular_aperture(
            wfo, diam / 2)  # create a wavefront with a circular pupil

        if CAL == 0:  # CAL=1 is for the back-propagation
            if (isinstance(pupil_file, (list, tuple, np.ndarray)) == True):
                proper.prop_multiply(wfo,
                                     pupil_large)  # multiply the saved pupil
            else:
                proper.prop_circular_obscuration(
                    wfo, r_obstr, NORM=True
                )  # create a wavefront with a circular central obscuration
            if (spiders_width != 0):
                for iter in range(0, len(spiders_angle)):
                    proper.prop_rectangular_obscuration(
                        wfo,
                        spiders_width,
                        2 * diam,
                        ROTATION=spiders_angle[iter])  # define the spiders

    else:
        PACKAGE_PATH = os.path.abspath(os.path.join(__file__, os.pardir))
        if (missing_segments_number == 1):
            pupil = fits.getdata(
                PACKAGE_PATH +
                '/ELT_2048_37m_11m_5mas_nospiders_1missing_cut.fits')
        if (missing_segments_number == 2):
            pupil = fits.getdata(
                PACKAGE_PATH +
                '/ELT_2048_37m_11m_5mas_nospiders_2missing_cut.fits')
        if (missing_segments_number == 4):
            pupil = fits.getdata(
                PACKAGE_PATH +
                '/ELT_2048_37m_11m_5mas_nospiders_4missing_cut.fits')
        if (missing_segments_number == 7):
            pupil = fits.getdata(
                PACKAGE_PATH +
                '/ELT_2048_37m_11m_5mas_nospiders_7missing_1_cut.fits')

        pupil_pixels = (pupil.shape)[0]  ## fits file size
        scaling_factor = float(npupil) / float(
            pupil_pixels
        )  ## scaling factor between the fits file size and the pupil size of the simulation
        if (Debug_print == True):
            print("scaling_factor: ", scaling_factor)
        pupil_scale = cv2.resize(
            pupil.astype(np.float32), (0, 0),
            fx=scaling_factor,
            fy=scaling_factor,
            interpolation=cv2.INTER_LINEAR
        )  # scale the pupil to the pupil size of the simualtions
        if (Debug_print == True):
            print("pupil_resample", pupil_scale.shape)
        pupil_large = np.zeros(
            (n, n))  # define an array of n-0s, where to insert the pupuil
        if (Debug_print == True):
            print("n: ", n)
            print("npupil: ", npupil)
        pupil_large[
            int(n / 2) + 1 - int(npupil / 2) - 1:int(n / 2) + 1 +
            int(npupil / 2),
            int(n / 2) + 1 - int(npupil / 2) - 1:int(n / 2) + 1 +
            int(npupil /
                2)] = pupil_scale  # insert the scaled pupil into the 0s grid

        if CAL == 0:  # CAL=1 is for the back-propagation
            proper.prop_multiply(wfo, pupil_large)  # multiply the saved pupil
            if (spiders_width != 0):
                for iter in range(0, len(spiders_angle)):
                    proper.prop_rectangular_obscuration(
                        wfo,
                        spiders_width,
                        2 * diam,
                        ROTATION=spiders_angle[iter])  # define the spiders

    return
Beispiel #12
0
def toliman_prescription_simple(wavelength, gridsize):
    # Values from Eduardo's RC Toliman system
    diam = 0.3  # telescope diameter in meters
    fl_pri = 0.5 * 1.143451  # primary focal length (m)
    # BN 20180208
    d_pri_sec = 0.549337630333726  # primary to secondary separation (m)
    #    d_pri_sec = 0.559337630333726            # primary to secondary separation (m)
    fl_sec = -0.5 * 0.0467579189727913  # secondary focal length (m)
    d_sec_to_focus = 0.528110658881  # nominal distance from secondary to focus (from eqn)
    #    d_sec_to_focus = 0.589999999989853       # nominal distance from secondary to focus
    beam_ratio = 0.2  # initial beam width/grid width

    m2_rad = 0.059  # Secondary half-diameter (m)
    m2_strut_width = 0.01  # Width of struts supporting M2 (m)
    m2_supports = 5

    # Define the wavefront
    wfo = proper.prop_begin(diam, wavelength, gridsize, beam_ratio)

    # Input aperture
    proper.prop_circular_aperture(wfo, diam / 2)
    # NOTE: could prop_propagate() here if some baffling included
    # Secondary and structs obscuration
    proper.prop_circular_obscuration(wfo,
                                     m2_rad)  # secondary mirror obscuration
    # Spider struts/vanes, arranged evenly radiating out from secondary
    strut_length = diam / 2 - m2_rad
    strut_step = 360 / m2_supports
    strut_centre = m2_rad + strut_length / 2
    for i in range(0, m2_supports):
        angle = i * strut_step
        radians = math.radians(angle)
        xoff = math.cos(radians) * strut_centre
        yoff = math.sin(radians) * strut_centre
        proper.prop_rectangular_obscuration(wfo,
                                            m2_strut_width,
                                            strut_length,
                                            xoff,
                                            yoff,
                                            ROTATION=angle + 90)

    # Define entrance
    proper.prop_define_entrance(wfo)

    # Primary mirror (treat as quadratic lens)
    proper.prop_lens(wfo, fl_pri, "primary")

    # Propagate the wavefront
    proper.prop_propagate(wfo, d_pri_sec, "secondary")

    # Secondary mirror (another quadratic lens)
    proper.prop_lens(wfo, fl_sec, "secondary")

    # NOTE: hole through primary?

    # Focus
    # BN 20180208 - Need TO_PLANE=True if you want an intermediate plane
    proper.prop_propagate(wfo, d_sec_to_focus, "focus", TO_PLANE=True)
    #    proper.prop_propagate(wfo, d_sec_to_focus, "focus", TO_PLANE = False)

    # End
    (wfo, sampling) = proper.prop_end(wfo)

    return (wfo, sampling)
Beispiel #13
0
def lyotstop(wf, diam, r_obstr, npupil, RAVC, LS, LS_parameters, spiders_angle, LS_phase_apodizer_file, LS_amplitude_apodizer_file, LS_misalignment, path, Debug_print, Debug):

    if (RAVC==True): # define the inner radius of the Lyot Stop
        t1_opt = 1. - 1./4*(r_obstr**2 + r_obstr*(math.sqrt(r_obstr**2 + 8.))) # define the apodizer transmission [Mawet2013]
        R1_opt = (r_obstr/math.sqrt(1. - t1_opt)) # define teh apodizer radius [Mawet2013]
        r_LS = R1_opt + LS_parameters[1] # when a Ring apodizer is present, the inner LS has to have at least the value of the apodizer radius
    else:
        r_LS = r_obstr + LS_parameters[1] # when no apodizer, the LS has to have at least the radius of the pupil central obstruction
    if LS==True: # apply the LS
        if (Debug_print==True):
            print("LS parameters: ", LS_parameters)
        proper.prop_circular_aperture(wf, LS_parameters[0], LS_misalignment[0], LS_misalignment[1], NORM=True)
        proper.prop_circular_obscuration(wf, r_LS, LS_misalignment[0], LS_misalignment[1], NORM=True)
        if (LS_parameters[2]!=0):
            for iter in range(0,len(spiders_angle)):
                if (Debug_print==True):
                    print("LS_misalignment: ", LS_misalignment)
                proper.prop_rectangular_obscuration(wf, LS_parameters[2], 2*diam,LS_misalignment[0], LS_misalignment[1], ROTATION=spiders_angle[iter]) # define the spiders

    
    if (isinstance(LS_phase_apodizer_file, (list, tuple, np.ndarray)) == True):
        xc_pixels = int(LS_misalignment[3]*npupil)
        yc_pixels = int(LS_misalignment[4]*npupil)
        apodizer_pixels = (LS_phase_apodizer_file.shape)[0]## fits file size
        scaling_factor = float(npupil)/float(pupil_pixels) ## scaling factor between the fits file size and the pupil size of the simulation
        if (Debug_print==True):
            print ("scaling_factor: ", scaling_factor)
        apodizer_scale = cv2.resize(phase_apodizer_file.astype(np.float32), (0,0), fx=scaling_factor, fy=scaling_factor, interpolation=cv2.INTER_LINEAR) # scale the pupil to the pupil size of the simualtions
        if (Debug_print==True):
            print ("apodizer_resample", apodizer_scale.shape)
        apodizer_large = np.zeros((n,n)) # define an array of n-0s, where to insert the pupuil
        if (Debug_print==True):
            print("n: ", n)
            print("npupil: ", npupil)
        apodizer_large[int(n/2)+1-int(npupil/2)-1 + xc_pixels:int(n/2)+1+int(npupil/2)+ xc_pixels,int(n/2)+1-int(npupil/2)-1+ yc_pixels:int(n/2)+1+int(npupil/2)+ yc_pixels] =apodizer_scale # insert the scaled pupil into the 0s grid
        phase_multiply = np.array(np.zeros((n,n)), dtype=complex) # create a complex array
        phase_multiply.imag = apodizer_large # define the imaginary part of the complex array as the atm screen
        apodizer = np.exp(phase_multiply)
        proper.prop_multiply(wf, apodizer)
        if (Debug == True):
            fits.writeto(path + 'LS_apodizer.fits', proper.prop_get_phase(wf), overwrite=True)

    
    
    if (isinstance(LS_amplitude_apodizer_file, (list, tuple, np.ndarray)) == True):
        xc_pixels = int(LS_misalignment[0]*npupil)
        yc_pixels = int(LS_misalignment[1]*npupil)
        apodizer_pixels = (LS_amplitude_apodizer_file.shape)[0]## fits file size
        scaling_factor = float(npupil)/float(pupil_pixels) ## scaling factor between the fits file size and the pupil size of the simulation
        if (Debug_print==True):
            print ("scaling_factor: ", scaling_factor)
            apodizer_scale = cv2.resize(amplitude_apodizer_file.astype(np.float32), (0,0), fx=scaling_factor, fy=scaling_factor, interpolation=cv2.INTER_LINEAR) # scale the pupil to the pupil size of the simualtions
        if (Debug_print==True):
            print ("apodizer_resample", apodizer_scale.shape)
        apodizer_large = np.zeros((n,n)) # define an array of n-0s, where to insert the pupuil
        if (Debug_print==True):
            print("n: ", n)
            print("npupil: ", npupil)
        apodizer_large[int(n/2)+1-int(npupil/2)-1 + xc_pixels:int(n/2)+1+int(npupil/2)+ xc_pixels,int(n/2)+1-int(npupil/2)-1+ yc_pixels:int(n/2)+1+int(npupil/2)+ yc_pixels] =apodizer_scale # insert the scaled pupil into the 0s grid
        apodizer = apodizer_large
        proper.prop_multiply(wf, apodizer)
        if (Debug == True):
            fits.writeto(path + 'LS_apodizer.fits', proper.prop_get_amplitude(wf), overwrite=True)





    return