def setup_gimbal_camera(self):
        image_width = 640
        image_height = 480
        fov = 120
        fx, fy = focal_length(image_width, image_height, fov)
        cx, cy = (image_width / 2.0, image_height / 2.0)
        K = camera_intrinsics(fx, fy, cx, cy)
        cam_model = PinholeCameraModel(image_width, image_height, K)

        return cam_model
Beispiel #2
0
    def setUp(self):
        # Pinhole Camera model
        image_width = 640
        image_height = 480
        fov = 60
        fx, fy = focal_length(image_width, image_height, fov)
        cx, cy = (image_width / 2.0, image_height / 2.0)
        K = camera_intrinsics(fx, fy, cx, cy)
        self.cam_model = PinholeCameraModel(image_width, image_height, K)

        # Feature estimator
        self.estimator = FeatureEstimator()
    def test_project_pinhole_equi(self):
        image_width = 640
        image_height = 480
        fov = 120
        fx, fy = focal_length(image_width, image_height, fov)
        cx, cy = (image_width / 2.0, image_height / 2.0)
        K = camera_intrinsics(fx, fy, cx, cy)

        D = np.array([0.0, 0.0, 0.0, 0.0])

        X_c = np.array([0.0001, 0.0001, 1.0])
        result = project_pinhole_equi(X_c, K, D)
        print(result)
Beispiel #4
0
    def setUp(self):
        # Pinhole Camera model
        image_width = 640
        image_height = 480
        fov = 60
        fx, fy = focal_length(image_width, image_height, fov)
        cx, cy = (image_width / 2.0, image_height / 2.0)
        K = camera_intrinsics(fx, fy, cx, cy)
        self.cam_model = PinholeCameraModel(image_width, image_height, K)

        # MSCKF
        self.msckf = MSCKF(n_g=0.001 * np.ones(3),
                           n_a=0.001 * np.ones(3),
                           n_wg=0.001 * np.ones(3),
                           n_wa=0.001 * np.ones(3),
                           ext_p_IC=np.array([0.0, 0.0, 0.0]),
                           ext_q_CI=np.array([0.5, -0.5, 0.5, -0.5]),
                           cam_model=self.cam_model)
    def setUp(self):
        # Generate random features
        nb_features = 100
        feature_bounds = {
            "x": {
                "min": -1.0,
                "max": 1.0
            },
            "y": {
                "min": -1.0,
                "max": 1.0
            },
            "z": {
                "min": 10.0,
                "max": 20.0
            }
        }
        self.features = rand3dfeatures(nb_features, feature_bounds)

        # Pinhole Camera model
        image_width = 640
        image_height = 480
        fov = 60
        fx, fy = focal_length(image_width, image_height, fov)
        cx, cy = (image_width / 2.0, image_height / 2.0)
        K = camera_intrinsics(fx, fy, cx, cy)

        self.cam = PinholeCameraModel(image_width, image_height, K)

        # Rotation and translation of camera 0 and camera 1
        self.R_0 = np.eye(3)
        self.t_0 = np.zeros((3, 1))
        self.R_1 = roty(deg2rad(10.0))
        self.t_1 = np.array([1.0, 0.0, 0.0]).reshape((3, 1))

        # Points as observed by camera 0 and camera 1
        self.obs0 = self.project_points(self.features, self.cam, self.R_0,
                                        self.t_0)
        self.obs1 = self.project_points(self.features, self.cam, self.R_1,
                                        self.t_1)
Beispiel #6
0
    def test_estimate(self):
        estimator = DatasetFeatureEstimator()

        # Pinhole Camera model
        image_width = 640
        image_height = 480
        fov = 60
        fx, fy = focal_length(image_width, image_height, fov)
        cx, cy = (image_width / 2.0, image_height / 2.0)
        K = camera_intrinsics(fx, fy, cx, cy)
        cam_model = PinholeCameraModel(image_width, image_height, K)

        # Camera states
        track_cam_states = []
        # -- Camera state 0
        p_G_C0 = np.array([0.0, 0.0, 0.0])
        rpy_C0G = np.array([deg2rad(0.0), deg2rad(0.0), deg2rad(0.0)])
        q_C0G = euler2quat(rpy_C0G)
        C_C0G = C(q_C0G)
        track_cam_states.append(CameraState(0, q_C0G, p_G_C0))

        # -- Camera state 1
        p_G_C1 = np.array([1.0, 0.0, 0.0])
        rpy_C1G = np.array([deg2rad(0.0), deg2rad(0.0), deg2rad(0.0)])
        q_C1G = euler2quat(rpy_C1G)
        C_C1G = C(q_C1G)
        track_cam_states.append(CameraState(1, q_C1G, p_G_C1))

        # Feature track
        p_G_f = np.array([[0.0], [0.0], [10.0]])
        kp0 = KeyPoint(cam_model.project(p_G_f, C_C0G, p_G_C0)[0:2], 0)
        kp1 = KeyPoint(cam_model.project(p_G_f, C_C1G, p_G_C1)[0:2], 0)
        track = FeatureTrack(0, 1, kp0, kp1, ground_truth=p_G_f)
        estimate = estimator.estimate(cam_model, track, track_cam_states)

        self.assertTrue(np.allclose(p_G_f.ravel(), estimate.ravel(), atol=0.1))
Beispiel #7
0
 def test_focal_length(self):
     fx, fy = focal_length(640, 320, 60)
     self.assertEqual(round(fx, 2), 554.26)
     self.assertEqual(round(fy, 2), 277.13)