def forallBoolEvalFalseDerivation(PofTrueVal, PofFalseVal):
    # hypothesis = [P(TRUE) = PofTrueVal] and [P(FALSE) in PofFalseVal]
    hypothesis = And(Equals(PofTrue, PofTrueVal),
                     Equals(PofFalse, PofFalseVal))
    # P(TRUE) in BOOLEANS assuming hypothesis
    hypothesis.deriveLeft().inBoolViaBooleanEquality().proven({hypothesis})
    # P(FALSE) in BOOLEANS assuming hypothesis
    hypothesis.deriveRight().inBoolViaBooleanEquality().proven({hypothesis})
    # forall_{A in BOOLEANS} P(A) in BOOLEANS assuming hypothesis
    Forall(A, inBool(PofA),
           domain=BOOLEANS).concludeAsFolded().proven({hypothesis})
    if PofTrueVal == FALSE:
        # Not(P(TRUE)) assuming hypothesis
        hypothesis.deriveLeft().deriveViaBooleanEquality().proven({hypothesis})
        example = TRUE
        # TRUE in BOOLEANS
        trueInBool
    elif PofFalseVal == FALSE:
        # Not(P(FALSE)) assuming hypothesis
        hypothesis.deriveRight().deriveViaBooleanEquality().proven(
            {hypothesis})
        example = FALSE
        # FALSE in BOOLEANS
        falseInBool
    # [forall_{A in BOOLEANS} P(A)] = FALSE assuming hypothesis
    conclusion = Exists(A, Not(PofA), domain=BOOLEANS).concludeViaExample(
        example).deriveNegatedForall().equateNegatedToFalse().proven(
            {hypothesis})
    # forall_{P} [(P(TRUE) = FALSE) and (P(FALSE) in BOOLEANS)] => {[forall_{A in BOOLEANS} P(A)] = FALSE}
    return Implies(hypothesis, conclusion).generalize(P)
Beispiel #2
0
from proveit.basiclogic import Forall, Equals, In, TRUE, Iff, Implies, And
from mappingOps import Domain, CoDomain
from proveit.common import f, g, x, y, Q, fx, fy, gx, Qx, Qy

fxMap = Lambda(x, fx)  # x -> f(x)
fxGivenQxMap = Lambda(x, fx, Qx)  # x -> f(x) | Q(x)
gxGivenQxMap = Lambda(x, gx, Qx)  # x -> g(x) | Q(x)
fDomain_eq_gDomain = Equals(Domain(f), Domain(g))  # Domain(f) = Domain(g)
fx_eq_gx = Equals(fx, gx)  # f(x) = g(x)
x_in_fDomain = In(x, Domain(f))  # x in Domain(f)
f_eq_g = Equals(f, g)  # f = g

mappingAxioms = Axioms(__package__, locals())

mapApplication = Forall((f, Q),
                        Forall(y, Equals(Operation(fxGivenQxMap, y), fy), Qy))

# forall_{f} [x -> f(x)] = [x -> f(x) | TRUE]
lambdaOverAllDef = Forall(f, Equals(Lambda(x, fx), Lambda(x, fx, TRUE)))

# forall_{f, Q} forall_{y} y in Domain(x -> f(x) | Q(x)) <=> Q(y)
lambdaDomainDef = Forall((f, Q), Forall(y, Iff(In(y, Domain(fxGivenQxMap)),
                                               Qy)))

# forall_{f, g} [Domain(f) = Domain(g) and forall_{x in Domain(f)} f(x) = g(x)] => (f = g)}
mapIsAsMapDoes = Forall(
    (f, g),
    Implies(And(fDomain_eq_gDomain, Forall(x, fx_eq_gx, x_in_fDomain)),
            f_eq_g))

mappingAxioms.finish(locals())
Beispiel #3
0
from proveit.basiclogic import Forall, And, Or, Equals, TRUE, FALSE, BOOLEANS, inBool
from proveit.common import A, B

# [(A and B) = TRUE] or [(A and B) = FALSE] assuming A, B in BOOLEANS
Forall(
    (A, B),
    Or(Equals(And(A, B), TRUE), Equals(And(A, B), FALSE)),
    domain=BOOLEANS).proveByEval().specialize().proven({inBool(A),
                                                        inBool(B)})
# forall_{A, B in BOOLEANS} (A and B) in BOOLEANS
inBool(And(A, B)).concludeAsFolded().generalize((A, B),
                                                domain=BOOLEANS).qed(__file__)
from proveit.basiclogic.equality.theorems import binary_substitution
from proveit.basiclogic import Implies, And, Equals
from proveit.common import a, b, c, f, x, y, fab

# hypothesis = (x=a and y=b)
hypothesis = And(Equals(x, a), Equals(y, b))
# [f(x, y) = f(a, b)] assuming hypothesis
fxy_eq_fab = binary_substitution.instantiate().derive_conclusion().proven(
    {hypothesis})
# [f(a, b)=c] => [f(x, y)=c] assuming hypothesis
conclusion = fxy_eq_fab.transitivity_impl(Equals(fab, c)).proven({hypothesis})
# forall_{f, x, y, a, b, c} [x=a and y=b] => {[f(a, b)=c] => [f(x, y)=c]}
Implies(hypothesis, conclusion).generalize((f, x, y, a, b, c)).qed(__file__)
Beispiel #5
0
from proveit.basiclogic import Implies, And, Equals
from proveit.common import a, b, f, x, y, fxy, fab

# hypothesis = (x=a and y=b)
hypothesis = And(Equals(x, a), Equals(y, b))
# f(x, y) = f(a, y) assuming hypothesis
fxy_eq_fay = hypothesis.deriveLeft().substitution(fxy, x).proven({hypothesis})
# f(a, y) = f(a, b) assuming hypothesis
fay_eq_fab = hypothesis.deriveRight().substitution(fab, b).proven({hypothesis})
# f(x, y) = f(a, b) assuming hypothesis
conclusion = fxy_eq_fay.applyTransitivity(fay_eq_fab).proven({hypothesis})
# forall_{f, x, y, a, b} (x=a and y=b) => [f(x, y) = f(a, b)]
Implies(hypothesis, conclusion).generalize((f, x, y, a, b)).qed(__file__)
from proveit.basiclogic import Forall, And, Or, Equals, TRUE, FALSE, BOOLEANS, in_bool
from proveit.common import A, B

# [(A and B) = TRUE] or [(A and B) = FALSE] assuming A, B in BOOLEANS
Forall((A, B),
       Or(Equals(And(A, B), TRUE), Equals(And(A, B), FALSE)),
       domain=BOOLEANS).prove_by_eval().instantiate().proven(
           {in_bool(A), in_bool(B)})
# forall_{A, B in BOOLEANS} (A and B) in BOOLEANS
in_bool(And(A, B)).conclude_as_folded().generalize(
    (A, B), domain=BOOLEANS).qed(__file__)
Beispiel #7
0
from proveit.basiclogic import And, Implies, Iff
from proveit.common import A, B, C

# hypothesis = (A <=> B) and (B <=> C)
hypothesis = And(Iff(A, B), Iff(B, C))
AiffB, BiffC = hypothesis.decompose()
# B assuming A <=> B and A
AiffB.deriveRight().proven({AiffB, A})
# A => C assuming A <=> B, B <=> C
Implies(A, BiffC.deriveRight()).proven({hypothesis})
# C assuming B <=> C and C
BiffC.deriveLeft().proven({BiffC, C})
# C => A assuming A <=> B, B <=> C
Implies(C, AiffB.deriveLeft()).proven({hypothesis})
# A <=> C assuming hypothesis
AiffC = Iff(A, C).concludeViaComposition().proven({hypothesis})
# forall_{A, B, C} (A <=> B and B <=> C) => (A <=> C)
Implies(hypothesis, AiffC).generalize((A, B, C)).qed(__file__)
Beispiel #8
0
from proveit.basiclogic.boolean.axioms import notT
from proveit.basiclogic import BOOLEANS, FALSE, inBool, Implies, And, Or, Not, deriveStmtEqTrue
from proveit.common import A, B, C, X

AorB = Or(A, B)
hypothesis = And(Implies(A, C), Implies(B, C))
ABCareBool = {inBool(A), inBool(B), inBool(C)}
# A=>C, B=>C assuming (A=>C and B=>C)
AimplC, _ = hypothesis.decompose()
# Not(A) assuming inBool(A), inBool(B), (A=>C and B=>C), Not(C)
AimplC.transpose().deriveConclusion().proven(
    {inBool(A), inBool(C), hypothesis,
     Not(C)})
# B assuming inBool(A, B, C), (A=>C and B=>C), (A or B), Not(C)
AorB.deriveRightIfNotLeft().proven(ABCareBool | {hypothesis, AorB, Not(C)})
# Not(TRUE) assuming inBool(A, B, C), (A=>C and B=>C), (A or B), Not(C)
deriveStmtEqTrue(C).subRightSideInto(
    Not(X), X).proven(ABCareBool | {hypothesis, AorB, Not(C)})
# FALSE assuming inBool(A, B, C), (A=>C and B=>C), (A or B), Not(C)
notT.deriveRightViaEquivalence().proven(
    ABCareBool | {hypothesis, AorB, Not(C)})
# Contradiction proof of C assuming (A=>C and B=>C), (A or B), inBool(A), and inBool(B)
Implies(Not(C),
        FALSE).deriveViaContradiction().proven(ABCareBool | {hypothesis, AorB})
# forall_{A, B, C in BOOLEANS} (A=>C and B=>C) => ((A or B) => C)
Implies(hypothesis, Implies(AorB, C)).generalize((A, B, C),
                                                 domain=BOOLEANS).qed(__file__)
Beispiel #9
0
from proveit.basiclogic import BOOLEANS, TRUE, FALSE, inBool, Implies, And, deriveStmtEqTrue, Equals
from proveit.common import A, P, PofA
from proveit.basiclogic.common import PofTrue, PofFalse

# hypothesis = [P(TRUE) and P(FALSE)]
hypothesis = And(PofTrue, PofFalse)
# inBool(A=TRUE), inBool(A=FALSE), inBool(P(A) = TRUE)
AeqT = Equals(A, TRUE)
AeqF = Equals(A, FALSE)
PofAeqT = Equals(PofA, TRUE)
for eqExpr in (AeqT, AeqF, PofAeqT):
    eqExpr.deduceInBool()
# P(TRUE), P(FALSE) assuming hypothesis
for case in hypothesis.decompose(): case.proven({hypothesis})
# A=TRUE => P(A)=TRUE assuming hypothesis
Implies(AeqT, deriveStmtEqTrue(AeqT.subLeftSideInto(PofA, A))).proven({hypothesis})
# A=FALSE => P(A)=TRUE assuming hypothesis
Implies(AeqF, deriveStmtEqTrue(AeqF.subLeftSideInto(PofA, A))).proven({hypothesis})
# P(A) assuming hypothesis, (A in BOOLEANS)
inBool(A).unfold().deriveCommonConclusion(PofAeqT).deriveViaBooleanEquality().proven({hypothesis, inBool(A)})
# forall_{P} P(TRUE) and P(FALSE) => forall_{A in BOOLEANS} P(A)
Implies(hypothesis, PofA.generalize(A, domain=BOOLEANS)).generalize(P).qed(__file__)
from proveit.basiclogic import BOOLEANS, TRUE, FALSE, in_bool, Implies, And, derive_stmt_eq_true, Equals
from proveit.common import A, P, PofA
from proveit.basiclogic.common import PofTrue, PofFalse

# hypothesis = [P(TRUE) and P(FALSE)]
hypothesis = And(PofTrue, PofFalse)
# in_bool(A=TRUE), in_bool(A=FALSE), in_bool(P(A) = TRUE)
AeqT = Equals(A, TRUE)
AeqF = Equals(A, FALSE)
PofAeqT = Equals(PofA, TRUE)
for eq_expr in (AeqT, AeqF, PofAeqT):
    eq_expr.deduce_in_bool()
# P(TRUE), P(FALSE) assuming hypothesis
for case in hypothesis.decompose():
    case.proven({hypothesis})
# A=TRUE => P(A)=TRUE assuming hypothesis
Implies(AeqT,
        derive_stmt_eq_true(AeqT.sub_left_side_into(PofA,
                                                    A))).proven({hypothesis})
# A=FALSE => P(A)=TRUE assuming hypothesis
Implies(AeqF,
        derive_stmt_eq_true(AeqF.sub_left_side_into(PofA,
                                                    A))).proven({hypothesis})
# P(A) assuming hypothesis, (A in BOOLEANS)
in_bool(A).unfold().derive_common_conclusion(
    PofAeqT).derive_via_boolean_equality().proven({hypothesis,
                                                   in_bool(A)})
# forall_{P} P(TRUE) and P(FALSE) => forall_{A in BOOLEANS} P(A)
Implies(hypothesis,
        PofA.generalize(A, domain=BOOLEANS)).generalize(P).qed(__file__)
from proveit.basiclogic.booleans.theorems import true_and_true
from proveit.basiclogic import derive_stmt_eq_true, And, TRUE
from proveit.common import A, B, X

# A=TRUE assuming A
AeqT = derive_stmt_eq_true(A).proven({A})
# B=TRUE assuming B
BeqT = derive_stmt_eq_true(B).proven({B})
# TRUE AND TRUE
true_and_true
# (TRUE and B) assuming B via (TRUE and TRUE)
BeqT.sub_left_side_into(And(TRUE, X), X).proven({B})
# (A and B) assuming A, B via (TRUE and TRUE)
AeqT.sub_left_side_into(And(X, B), X).proven({A, B})
# forall_{A | A, B | B} (A and B)
And(A, B).generalize((A, B), conditions=(A, B)).qed(__file__)