Beispiel #1
0
    def __init__(self, task: Task, cfg: dict):
        self.name = "CBIRRT"
        self.n_manifolds = len(task.manifolds)
        self.task = task
        self.start = task.start
        self.n_samples = cfg['N']
        self.alpha = cfg['ALPHA']
        self.eps = cfg['EPS']
        self.collision_res = cfg['COLLISION_RES']
        self.d = task.d

        self.lim_lo = task.lim_lo
        self.lim_up = task.lim_up
        self.result = False
        self.goal = task.goal
        self.path = None
        self.path_id = None

        self.G_a = Tree(self.d, exact_nn=False)
        self.G_b = Tree(self.d, exact_nn=False)

        self.manifold_projectors = []
        for m in self.task.manifolds:
            self.manifold_projectors.append(Projection(f=m.y, J=m.J))

        # check if start point is on first manifold
        if not is_on_manifold(task.manifolds[0], task.start, self.eps):
            raise Exception(
                'The start point is not on the manifold h(start)= ' +
                str(task.manifolds[0].y(task.start)))

        # check if start point is in collision
        if self.task.is_collision_conf(task.start):
            raise Exception('The start point is in collision.')
Beispiel #2
0
    def __init__(self,
                 task: Task,
                 manifold: Manifold,
                 cfg: dict):
        self.name = "RRT_Manifold"
        self.task = task
        self.start_value = task.start
        self.goal_value = task.goal
        self.manifold = manifold
        self.n_samples = cfg['N']
        self.alpha = cfg['ALPHA']
        self.beta = cfg['BETA']
        self.conv_tol = cfg['CONV_TOL']
        self.collision_res = cfg['COLLISION_RES']
        self.proj_step_size = cfg['PROJ_STEP_SIZE']
        self.d = task.d

        self.G = Tree(task.d, exact_nn=False)
        self.result = False
        self.Q_near_ids = []

        self.lim_lo = task.lim_lo
        self.lim_up = task.lim_up
        self.gamma = np.power(2 * (1 + 1.0 / float(self.d)), 1.0 / float(self.d)) * \
                     np.power(task.get_joint_space_volume() / unit_ball_measure(self.d), 1. / float(self.d))
Beispiel #3
0
    def constrained_extend(self, G: Tree, q_from: np.ndarray, q_from_id: int,
                           q_to: np.ndarray) -> np.ndarray:
        q_s = q_from.copy()
        q_s_id = q_from_id
        q_s_old = q_s.copy()

        while True:
            if np.isclose(q_s, q_to).all():
                return q_s
            if np.linalg.norm(q_s - q_to) > np.linalg.norm(q_s_old - q_to):
                return q_s_old

            q_s_old = q_s.copy()
            q_s_old_id = q_s_id

            # step towards the target configuration
            q_s = self.steer(q_from=q_s, q_to=q_to)

            # project q_s onto nearest manifold
            h = [np.linalg.norm(m.y(q_s)) for m in self.task.manifolds]
            idx = np.argmin(h)

            if idx != G.V[q_s_id].aux:
                curr_manifold = self.task.manifolds[G.V[q_s_id].aux]
                next_manifold = self.task.manifolds[idx]
                joint_manifold = ManifoldStack([curr_manifold, next_manifold])
                joint_projector = Projection(joint_manifold.y,
                                             joint_manifold.J)
                res, q_s = joint_projector.project(q_s)
            else:
                res, q_s = self.manifold_projectors[idx].project(q_s)

            if res and not self.is_collision(q_s_old, q_s):
                inc_cost = np.linalg.norm(q_s - q_s_old)
                node_cost = G.V[q_s_old_id].cost + inc_cost
                q_s_id = G.node_count
                G.add_node(node_id=q_s_id,
                           node_value=q_s,
                           node_cost=node_cost,
                           inc_cost=inc_cost)
                G.add_edge(edge_id=G.edge_count,
                           node_a=q_s_old_id,
                           node_b=q_s_id)
                G.V[q_s_id].aux = idx
                if np.isclose(q_s, q_s_old).all():
                    return q_s
            else:
                return q_s_old
Beispiel #4
0
    def shortcut(self, path: list, N: int = 100) -> list:
        path_sc = path.copy()
        for n in range(N):
            m = len(path_sc)
            i = np.random.randint(0, m - 1)
            j = np.random.randint(i, m)
            q_i = path_sc[i]
            q_j = path_sc[j]
            G = Tree(self.d, exact_nn=False)
            G.add_node(0, q_i, 0, 0)
            h = [np.linalg.norm(m.y(q_i)) for m in self.task.manifolds]
            G.V[0].aux = np.argmin(h)
            q_reach = self.constrained_extend(G, q_i, 0, q_j)

            if np.linalg.norm(q_reach - q_j) < self.eps:
                if G.comp_opt_path(q_reach) < path_cost(path_sc[i:j + 1]):
                    path_i_j = [G.V[idx].value for idx in G.path]
                    path_sc = path_sc[:i] + path_i_j + path_sc[j + 1:]

        return path_sc
    def run(self) -> bool:
        curr_projectors = []
        next_projectors = []
        curr_manifolds = []
        next_manifolds = []
        # iterate over sequence of manifolds
        for n in range(self.n_manifolds - 1):
            print('######################################################')
            print('n', n)
            print('Active Manifold: ', self.task.manifolds[n].name)
            print('Target Manifold: ', self.task.manifolds[n + 1].name)

            curr_manifold = self.task.manifolds[n]
            next_manifold = self.task.manifolds[n + 1]
            joint_manifold = ManifoldStack([curr_manifold, next_manifold])

            # initiate manifold and projector sequence
            curr_manifolds += [curr_manifold]
            next_manifolds += [next_manifold]
            curr_projectors += [
                Projection(f=curr_manifold.y,
                           J=curr_manifold.J,
                           step_size=self.proj_step_size)
            ]
            next_projectors += [
                Projection(f=joint_manifold.y,
                           J=joint_manifold.J,
                           step_size=self.proj_step_size)
            ]

            if n < self.n_manifolds - 1:
                self.V_goals += [[]]

        self.G = Tree(self.d, exact_nn=False)
        self.G.add_node(node_id=0,
                        node_value=self.start,
                        node_cost=0.0,
                        inc_cost=0.0)
        self.G.V[0].aux = 0  # store manifold id for every node

        pbar = tqdm.tqdm(total=self.n_samples)
        for i in range(self.n_samples):
            pbar.update()
            q_target = self.task.sample()
            q_near, q_near_id = self.G.get_nearest_neighbor(
                node_value=q_target)
            manifold_id = self.G.V[q_near_id].aux

            if manifold_id >= self.n_manifolds - 1:
                continue  # do not extend goal nodes

            if is_on_manifold(self.task.manifolds[manifold_id + 1], q_near):
                # move node directly to next manifold
                self.G.V[q_near_id].aux += 1
                continue

            curr_manifold = curr_manifolds[manifold_id]
            next_manifold = next_manifolds[manifold_id]
            curr_projector = curr_projectors[manifold_id]
            joint_projector = next_projectors[manifold_id]
            q_new = self.steer(q_near, q_near_id, q_target, curr_manifold,
                               next_manifold)

            if q_new is None:
                continue

            # project q_new on current or next manifold
            on_next_manifold = False
            if np.linalg.norm(
                    next_manifold.y(q_new)) < np.random.rand() * self.r_max:
                res, q_new_proj = joint_projector.project(q_new)
            else:
                res, q_new_proj = curr_projector.project(q_new)

            if not res:
                continue  # continue if projection was unsuccessful

            # check if q_new_proj is on the next manifold
            if is_on_manifold(next_manifold, q_new_proj, self.eps):
                on_next_manifold = True
                if len(self.V_goals[manifold_id]) > 0:
                    q_proj_near = min(self.V_goals[manifold_id],
                                      key=lambda idx: np.linalg.norm(self.G.V[
                                          idx].value - q_new_proj))
                    if np.linalg.norm(self.G.V[q_proj_near].value -
                                      q_new_proj) < self.rho:
                        continue  # continue if a node close to q_new_proj is already in the tree

            q_new_idx = self.G.node_count
            extended = self.extend(q_from=q_near,
                                   q_from_id=q_near_id,
                                   q_to=q_new_proj,
                                   q_to_id=q_new_idx,
                                   manifold_id=manifold_id + on_next_manifold)

            if extended:
                self.rewire(q_from=q_new_proj, q_from_id=q_new_idx)

                if on_next_manifold:
                    # add to V_goal if q_new is on the next manifold
                    self.V_goals[manifold_id].append(q_new_idx)

        pbar.close()
        print('')
        if len(self.V_goals[-1]) == 0:
            return False

        opt_idx = min(self.V_goals[-1],
                      key=lambda idx: np.linalg.norm(self.G.V[idx].cost))
        opt_path_idx = self.G.comp_path(opt_idx)

        # split into individual path segments per manifold
        opt_path = []
        opt_path_m = []
        m = 0
        for idx in opt_path_idx:
            opt_path_m += [self.G.V[idx].value]
            if self.G.V[idx].aux != m:
                opt_path += [opt_path_m.copy()]
                opt_path_m = [self.G.V[idx].value]
                m += 1

        if len(opt_path) != self.n_manifolds - 1:
            return False

        self.path = opt_path
        self.path_idx = opt_path_idx
        return True
class PSMSingleTree:
    def __init__(self, task: Task, cfg: dict):
        self.name = "PSM_Single_Tree"
        self.n_manifolds = len(task.manifolds)
        self.task = task
        self.start = task.start
        self.n_samples = cfg['N'] * (self.n_manifolds - 1)
        self.alpha = cfg['ALPHA']
        self.beta = cfg['BETA']
        self.eps = cfg['EPS']
        self.rho = cfg['RHO']
        self.r_max = cfg['R_MAX']
        self.collision_res = cfg['COLLISION_RES']
        self.d = task.d
        self.greedy = cfg['GREEDY']
        self.proj_step_size = cfg['PROJ_STEP_SIZE']

        self.lim_lo = task.lim_lo
        self.lim_up = task.lim_up
        self.gamma = np.power(2 * (1 + 1.0 / float(self.d)), 1.0 / float(self.d)) * \
                     np.power(get_volume(self.lim_lo, self.lim_up) / unit_ball_measure(self.d), 1. / float(self.d))

        self.Q_near_ids = []
        self.G = None
        self.V_goals = []
        self.path = None
        self.path_id = None

        # check if start point is on first manifold
        if not is_on_manifold(task.manifolds[0], task.start, self.eps):
            raise Exception(
                'The start point is not on the manifold h(start)= ' +
                str(task.manifolds[0].y(task.start)))

        # check if start point is in configuration space limits
        if not self.task.is_valid_conf(task.start):
            raise Exception('The start point is not in the system limits.')

        # check if start point is in collision
        if self.task.is_collision_conf(task.start):
            raise Exception('The start point is in collision.')

    def run(self) -> bool:
        curr_projectors = []
        next_projectors = []
        curr_manifolds = []
        next_manifolds = []
        # iterate over sequence of manifolds
        for n in range(self.n_manifolds - 1):
            print('######################################################')
            print('n', n)
            print('Active Manifold: ', self.task.manifolds[n].name)
            print('Target Manifold: ', self.task.manifolds[n + 1].name)

            curr_manifold = self.task.manifolds[n]
            next_manifold = self.task.manifolds[n + 1]
            joint_manifold = ManifoldStack([curr_manifold, next_manifold])

            # initiate manifold and projector sequence
            curr_manifolds += [curr_manifold]
            next_manifolds += [next_manifold]
            curr_projectors += [
                Projection(f=curr_manifold.y,
                           J=curr_manifold.J,
                           step_size=self.proj_step_size)
            ]
            next_projectors += [
                Projection(f=joint_manifold.y,
                           J=joint_manifold.J,
                           step_size=self.proj_step_size)
            ]

            if n < self.n_manifolds - 1:
                self.V_goals += [[]]

        self.G = Tree(self.d, exact_nn=False)
        self.G.add_node(node_id=0,
                        node_value=self.start,
                        node_cost=0.0,
                        inc_cost=0.0)
        self.G.V[0].aux = 0  # store manifold id for every node

        pbar = tqdm.tqdm(total=self.n_samples)
        for i in range(self.n_samples):
            pbar.update()
            q_target = self.task.sample()
            q_near, q_near_id = self.G.get_nearest_neighbor(
                node_value=q_target)
            manifold_id = self.G.V[q_near_id].aux

            if manifold_id >= self.n_manifolds - 1:
                continue  # do not extend goal nodes

            if is_on_manifold(self.task.manifolds[manifold_id + 1], q_near):
                # move node directly to next manifold
                self.G.V[q_near_id].aux += 1
                continue

            curr_manifold = curr_manifolds[manifold_id]
            next_manifold = next_manifolds[manifold_id]
            curr_projector = curr_projectors[manifold_id]
            joint_projector = next_projectors[manifold_id]
            q_new = self.steer(q_near, q_near_id, q_target, curr_manifold,
                               next_manifold)

            if q_new is None:
                continue

            # project q_new on current or next manifold
            on_next_manifold = False
            if np.linalg.norm(
                    next_manifold.y(q_new)) < np.random.rand() * self.r_max:
                res, q_new_proj = joint_projector.project(q_new)
            else:
                res, q_new_proj = curr_projector.project(q_new)

            if not res:
                continue  # continue if projection was unsuccessful

            # check if q_new_proj is on the next manifold
            if is_on_manifold(next_manifold, q_new_proj, self.eps):
                on_next_manifold = True
                if len(self.V_goals[manifold_id]) > 0:
                    q_proj_near = min(self.V_goals[manifold_id],
                                      key=lambda idx: np.linalg.norm(self.G.V[
                                          idx].value - q_new_proj))
                    if np.linalg.norm(self.G.V[q_proj_near].value -
                                      q_new_proj) < self.rho:
                        continue  # continue if a node close to q_new_proj is already in the tree

            q_new_idx = self.G.node_count
            extended = self.extend(q_from=q_near,
                                   q_from_id=q_near_id,
                                   q_to=q_new_proj,
                                   q_to_id=q_new_idx,
                                   manifold_id=manifold_id + on_next_manifold)

            if extended:
                self.rewire(q_from=q_new_proj, q_from_id=q_new_idx)

                if on_next_manifold:
                    # add to V_goal if q_new is on the next manifold
                    self.V_goals[manifold_id].append(q_new_idx)

        pbar.close()
        print('')
        if len(self.V_goals[-1]) == 0:
            return False

        opt_idx = min(self.V_goals[-1],
                      key=lambda idx: np.linalg.norm(self.G.V[idx].cost))
        opt_path_idx = self.G.comp_path(opt_idx)

        # split into individual path segments per manifold
        opt_path = []
        opt_path_m = []
        m = 0
        for idx in opt_path_idx:
            opt_path_m += [self.G.V[idx].value]
            if self.G.V[idx].aux != m:
                opt_path += [opt_path_m.copy()]
                opt_path_m = [self.G.V[idx].value]
                m += 1

        if len(opt_path) != self.n_manifolds - 1:
            return False

        self.path = opt_path
        self.path_idx = opt_path_idx
        return True

    def steer(self, q_from: np.ndarray, q_from_id: int, q_to: np.ndarray,
              curr_manifold: Manifold, next_manifold: Manifold) -> np.ndarray:
        if np.random.rand() < self.beta and not self.G.V[q_from_id].con_extend:
            # steer towards next_manifolds
            self.G.V[q_from_id].con_extend = True
            yn = next_manifold.y(q_from)
            Jn = next_manifold.J(q_from)

            d = -Jn.T @ yn
            # project on current manifold
            J = null_space(curr_manifold.J(q_from))
            if J.shape[1] != 0:
                d = J @ J.T @ d

        else:
            # steer towards q_to
            d = (q_to - q_from)

            # project on current manifold
            J = null_space(curr_manifold.J(q_from))
            if J.shape[1] != 0:
                d = J @ J.T @ d

        if np.linalg.norm(d) > 0.0:
            q_new = q_from + self.alpha * d * (1.0 / np.linalg.norm(d))
            return q_new
        else:
            return None

    def is_collision(self, q_a: np.ndarray, q_b: np.ndarray) -> bool:
        N = int(ceil(np.linalg.norm(q_b - q_a) / self.collision_res))
        for i in range(N + 1):
            q = q_a if N == 0 else q_a + i / float(N) * (q_b - q_a)
            res = self.task.is_collision_conf(q)
            if res:
                return True
        return False

    def extend(self, q_from: np.ndarray, q_from_id: int, q_to: np.ndarray,
               q_to_id: int, manifold_id: int) -> bool:
        if self.is_collision(q_from, q_to):
            return False

        n = float(len(self.G.V))
        r = min(
            [self.gamma * np.power(np.log(n) / n, 1.0 / self.d), self.alpha])

        self.Q_near_ids = self.G.get_nearest_neighbors(node_value=q_to,
                                                       radius=r)

        c_min = self.G.V[q_from_id].cost + np.linalg.norm(q_from - q_to)
        c_min_inc = np.linalg.norm(q_from - q_to)
        q_min_idx = q_from_id
        for idx in self.Q_near_ids:
            q_idx = self.G.V[idx].value
            c_idx = self.G.V[idx].cost + np.linalg.norm(q_idx - q_to)

            if not self.is_collision(q_idx, q_to) and c_idx < c_min:
                c_min = c_idx
                c_min_inc = np.linalg.norm(q_idx - q_to)
                q_min_idx = idx

        self.G.add_node(node_id=q_to_id,
                        node_value=q_to,
                        node_cost=c_min,
                        inc_cost=c_min_inc)
        self.G.V[q_to_id].aux = manifold_id
        self.G.add_edge(edge_id=self.G.edge_count,
                        node_a=q_min_idx,
                        node_b=q_to_id)

        return True

    def rewire(self, q_from: np.ndarray, q_from_id: int):
        for idx in self.Q_near_ids:  # Q_near_ids was previously computed in extend function
            q_idx = self.G.V[idx].value
            c_idx = self.G.V[idx].cost
            c_new = self.G.V[q_from_id].cost + np.linalg.norm(q_from - q_idx)

            if not self.is_collision(q_from, q_idx) and c_new < c_idx:
                idx_parent = self.G.V[idx].parent
                self.G.remove_edge(idx_parent, idx)
                self.G.add_edge(edge_id=self.G.edge_count,
                                node_a=q_from_id,
                                node_b=idx)
                self.G.V[idx].cost = c_new
                self.G.V[idx].parent = q_from_id
                self.G.V[idx].inc_cost = np.linalg.norm(q_from - q_idx)
                self.G.update_child_costs(node_id=idx)
Beispiel #7
0
class RRTStarManifold:
    def __init__(self,
                 task: Task,
                 manifold: Manifold,
                 cfg: dict):
        self.name = "RRT_Manifold"
        self.task = task
        self.start_value = task.start
        self.goal_value = task.goal
        self.manifold = manifold
        self.n_samples = cfg['N']
        self.alpha = cfg['ALPHA']
        self.beta = cfg['BETA']
        self.conv_tol = cfg['CONV_TOL']
        self.collision_res = cfg['COLLISION_RES']
        self.proj_step_size = cfg['PROJ_STEP_SIZE']
        self.d = task.d

        self.G = Tree(task.d, exact_nn=False)
        self.result = False
        self.Q_near_ids = []

        self.lim_lo = task.lim_lo
        self.lim_up = task.lim_up
        self.gamma = np.power(2 * (1 + 1.0 / float(self.d)), 1.0 / float(self.d)) * \
                     np.power(task.get_joint_space_volume() / unit_ball_measure(self.d), 1. / float(self.d))

    def steer(self,
              q_from: np.ndarray,
              q_to: np.ndarray) -> np.ndarray:
        if np.linalg.norm(q_to - q_from) < self.alpha:
            q_new = np.copy(q_to)
        else:
            diff = q_to - q_from
            q_new = q_from + self.alpha * diff * (1.0 / np.linalg.norm(diff))
        return q_new

    def is_collision(self,
                     q_a: np.ndarray,
                     q_b: np.ndarray) -> bool:
        N = int(ceil(np.linalg.norm(q_b - q_a) / self.collision_res))
        for i in range(N + 1):
            q = q_a if N == 0 else q_a + i / float(N) * (q_b - q_a)
            res = self.task.is_collision_conf(q)
            if res:
                return True
        return False

    def extend(self,
               q_from: np.ndarray,
               q_from_id: int,
               q_to: np.ndarray,
               q_to_id: int) -> bool:
        if not self.is_collision(q_from, q_to):
            n = float(len(self.G.V))
            r = min([self.gamma * np.power(np.log(n) / n, 1.0 / self.d), self.alpha])

            self.Q_near_ids = self.G.get_nearest_neighbors(node_value=q_to, radius=r)

            c_min = self.G.V[q_from_id].cost + np.linalg.norm(q_from - q_to)
            c_min_inc = np.linalg.norm(q_from - q_to)
            q_min_idx = q_from_id
            for idx in self.Q_near_ids:
                q_idx = self.G.V[idx].value
                c_idx = self.G.V[idx].cost + np.linalg.norm(q_idx - q_to)

                if not self.is_collision(q_idx, q_to) and c_idx < c_min:
                    c_min = c_idx
                    c_min_inc = np.linalg.norm(q_idx - q_to)
                    q_min_idx = idx

            self.G.add_node(node_id=q_to_id, node_value=q_to, node_cost=c_min, inc_cost=c_min_inc)
            self.G.add_edge(edge_id=self.G.edge_count, node_a=q_min_idx, node_b=q_to_id)

            if np.linalg.norm(q_to - self.goal_value) < self.conv_tol:
                self.result = True
            return True

        return False

    def rewire(self,
               q_from: np.ndarray,
               q_from_id: int):
        for idx in self.Q_near_ids:  # Q_near_ids was previously computed in extend function
            q_idx = self.G.V[idx].value
            c_idx = self.G.V[idx].cost
            c_new = self.G.V[q_from_id].cost + np.linalg.norm(q_from - q_idx)

            if not self.is_collision(q_from, q_idx) and c_new < c_idx:
                idx_parent = self.G.V[idx].parent
                self.G.remove_edge(idx_parent, idx)
                self.G.add_edge(edge_id=self.G.edge_count, node_a=q_from_id, node_b=idx)
                self.G.V[idx].cost = c_new
                self.G.V[idx].parent = q_from_id
                self.G.V[idx].inc_cost = np.linalg.norm(q_from - q_idx)
                self.G.update_child_costs(node_id=idx)

                # check for convergence
                if np.linalg.norm(q_idx - self.goal_value) < self.conv_tol:
                    self.result = True

    def run(self) -> (list, list):
        # the start node is only node in tree with id=0, cost=0, parent=None
        self.G.add_node(node_id=0, node_value=self.start_value, node_cost=0.0, inc_cost=0.0)
        self.result = False

        proj = Projection(f=self.manifold.y, J=self.manifold.J, step_size=self.proj_step_size)
        pbar = tqdm.tqdm(total=self.n_samples)
        for i in range(self.n_samples):
            pbar.update()
            if np.random.rand() < self.beta:
                q_target = self.goal_value
            else:
                q_target = self.task.sample()

            q_near, q_near_id = self.G.get_nearest_neighbor(node_value=q_target)
            q_new = self.steer(q_near, q_target)
            q_new_idx = self.G.node_count

            res, q_new = proj.project(q_new)
            if not res:
                continue

            extended = self.extend(q_from=q_near, q_from_id=q_near_id, q_to=q_new, q_to_id=q_new_idx)
            if extended:
                self.rewire(q_from=q_new, q_from_id=q_new_idx)

        pbar.close()
        print('')

        self.G.comp_opt_path(self.goal_value, self.conv_tol)
        opt_path = [self.G.V[idx].value for idx in self.G.path]
        return self.G.path, opt_path
Beispiel #8
0
class CBIRRT:
    def __init__(self, task: Task, cfg: dict):
        self.name = "CBIRRT"
        self.n_manifolds = len(task.manifolds)
        self.task = task
        self.start = task.start
        self.n_samples = cfg['N']
        self.alpha = cfg['ALPHA']
        self.eps = cfg['EPS']
        self.collision_res = cfg['COLLISION_RES']
        self.d = task.d

        self.lim_lo = task.lim_lo
        self.lim_up = task.lim_up
        self.result = False
        self.goal = task.goal
        self.path = None
        self.path_id = None

        self.G_a = Tree(self.d, exact_nn=False)
        self.G_b = Tree(self.d, exact_nn=False)

        self.manifold_projectors = []
        for m in self.task.manifolds:
            self.manifold_projectors.append(Projection(f=m.y, J=m.J))

        # check if start point is on first manifold
        if not is_on_manifold(task.manifolds[0], task.start, self.eps):
            raise Exception(
                'The start point is not on the manifold h(start)= ' +
                str(task.manifolds[0].y(task.start)))

        # check if start point is in collision
        if self.task.is_collision_conf(task.start):
            raise Exception('The start point is in collision.')

    def run(self) -> bool:
        self.G_a.add_node(node_id=0,
                          node_value=self.start,
                          node_cost=0.0,
                          inc_cost=0.0)
        self.G_b.add_node(node_id=0,
                          node_value=self.goal,
                          node_cost=0.0,
                          inc_cost=0.0)
        self.G_a.V[0].aux = 0
        self.G_b.V[0].aux = self.n_manifolds - 1

        # grow tree with bidirectional strategy
        for i in range(self.n_samples):
            q_rand = self.task.sample()
            q_near_a, q_near_a_id = self.G_a.get_nearest_neighbor(
                node_value=q_rand)
            q_reached_a = self.constrained_extend(self.G_a, q_near_a,
                                                  q_near_a_id, q_rand)
            q_near_b, q_near_b_id = self.G_b.get_nearest_neighbor(
                node_value=q_reached_a)
            q_reached_b = self.constrained_extend(self.G_b, q_near_b,
                                                  q_near_b_id, q_reached_a)
            if np.isclose(q_reached_a, q_reached_b).all():
                cost_a = self.G_a.comp_opt_path(q_reached_a)
                cost_b = self.G_b.comp_opt_path(q_reached_b)
                path_idx = [self.G_a.path, list(reversed(self.G_b.path))]
                path = [self.G_a.V[idx].value for idx in self.G_a.path] + \
                       [self.G_b.V[idx].value for idx in list(reversed(self.G_b.path))]
                path_m = [self.G_a.V[idx].aux for idx in self.G_a.path] + \
                         [self.G_b.V[idx].aux for idx in list(reversed(self.G_b.path))]

                if not np.isclose(path[0], self.start).all():
                    path_idx.reverse()
                    path.reverse()
                    path_m.reverse()

                path_sc = self.shortcut(path, N=2000)

                # split the found path into subpath corresponding to the individual manifolds
                path_sc_out = []
                i_m = 1
                manifold_idx = [0]
                for idx, q in enumerate(path_sc):
                    if is_on_manifold(self.task.manifolds[i_m], q):
                        manifold_idx += [idx]
                        i_m += 1
                        if i_m == len(self.task.manifolds):
                            break

                for i in range(len(manifold_idx) - 1):
                    path_sc_out += [
                        path_sc[manifold_idx[i]:manifold_idx[i + 1] + 1]
                    ]

                i_m = 1
                manifold_idx = [0]
                path_out = []
                path_idx_out = []
                for idx, q in enumerate(path):
                    if is_on_manifold(self.task.manifolds[i_m], q):
                        manifold_idx += [idx]
                        i_m += 1
                        if i_m == len(self.task.manifolds):
                            break

                for i in range(len(manifold_idx) - 1):
                    path_out += [path[manifold_idx[i]:manifold_idx[i + 1] + 1]]
                    path_idx_out += [
                        path_idx[manifold_idx[i]:manifold_idx[i + 1] + 1]
                    ]

                self.path_id = path_idx_out
                self.path = path_sc_out
                return True
            else:
                self.G_a, self.G_b = self.G_b, self.G_a

        return False

    def shortcut(self, path: list, N: int = 100) -> list:
        path_sc = path.copy()
        for n in range(N):
            m = len(path_sc)
            i = np.random.randint(0, m - 1)
            j = np.random.randint(i, m)
            q_i = path_sc[i]
            q_j = path_sc[j]
            G = Tree(self.d, exact_nn=False)
            G.add_node(0, q_i, 0, 0)
            h = [np.linalg.norm(m.y(q_i)) for m in self.task.manifolds]
            G.V[0].aux = np.argmin(h)
            q_reach = self.constrained_extend(G, q_i, 0, q_j)

            if np.linalg.norm(q_reach - q_j) < self.eps:
                if G.comp_opt_path(q_reach) < path_cost(path_sc[i:j + 1]):
                    path_i_j = [G.V[idx].value for idx in G.path]
                    path_sc = path_sc[:i] + path_i_j + path_sc[j + 1:]

        return path_sc

    def steer(self, q_from: np.ndarray, q_to: np.ndarray) -> np.ndarray:
        if np.linalg.norm(q_to - q_from) < self.alpha:
            q_new = np.copy(q_to)
        else:
            diff = q_to - q_from
            q_new = q_from + self.alpha * diff * (1.0 / np.linalg.norm(diff))
        return q_new

    def is_collision(self, q_a: np.ndarray, q_b: np.ndarray) -> bool:
        N = int(ceil(np.linalg.norm(q_b - q_a) / self.collision_res))
        for i in range(N + 1):
            q = q_a if N == 0 else q_a + i / float(N) * (q_b - q_a)
            res = self.task.is_collision_conf(q)
            if res:
                return True
        return False

    def constrained_extend(self, G: Tree, q_from: np.ndarray, q_from_id: int,
                           q_to: np.ndarray) -> np.ndarray:
        q_s = q_from.copy()
        q_s_id = q_from_id
        q_s_old = q_s.copy()

        while True:
            if np.isclose(q_s, q_to).all():
                return q_s
            if np.linalg.norm(q_s - q_to) > np.linalg.norm(q_s_old - q_to):
                return q_s_old

            q_s_old = q_s.copy()
            q_s_old_id = q_s_id

            # step towards the target configuration
            q_s = self.steer(q_from=q_s, q_to=q_to)

            # project q_s onto nearest manifold
            h = [np.linalg.norm(m.y(q_s)) for m in self.task.manifolds]
            idx = np.argmin(h)

            if idx != G.V[q_s_id].aux:
                curr_manifold = self.task.manifolds[G.V[q_s_id].aux]
                next_manifold = self.task.manifolds[idx]
                joint_manifold = ManifoldStack([curr_manifold, next_manifold])
                joint_projector = Projection(joint_manifold.y,
                                             joint_manifold.J)
                res, q_s = joint_projector.project(q_s)
            else:
                res, q_s = self.manifold_projectors[idx].project(q_s)

            if res and not self.is_collision(q_s_old, q_s):
                inc_cost = np.linalg.norm(q_s - q_s_old)
                node_cost = G.V[q_s_old_id].cost + inc_cost
                q_s_id = G.node_count
                G.add_node(node_id=q_s_id,
                           node_value=q_s,
                           node_cost=node_cost,
                           inc_cost=inc_cost)
                G.add_edge(edge_id=G.edge_count,
                           node_a=q_s_old_id,
                           node_b=q_s_id)
                G.V[q_s_id].aux = idx
                if np.isclose(q_s, q_s_old).all():
                    return q_s
            else:
                return q_s_old
    def run(self) -> bool:
        # iterate over sequence of manifolds
        for n in range(self.n_manifolds - 1):
            print('######################################################')
            print('n', n)
            print('Active Manifold: ', self.task.manifolds[n].name)
            print('Target Manifold: ', self.task.manifolds[n + 1].name)

            self.G = Tree(self.d, exact_nn=False)
            if n == 0:
                # init tree with start node
                self.G.add_node(node_id=0,
                                node_value=self.start,
                                node_cost=0.0,
                                inc_cost=0.0)
            else:
                # init tree with transition nodes
                self.G.abstract_root = True
                self.G.add_node(node_id=0,
                                node_value=np.ones(self.d) * np.inf,
                                node_cost=0.0,
                                inc_cost=0.0)  # virtual root node
                for idx, v_id in enumerate(self.V_goal):
                    node_id = self.G_list[-1].V[v_id]
                    self.G.add_node(node_id=idx + 1,
                                    node_value=node_id.value,
                                    node_cost=node_id.cost,
                                    inc_cost=node_id.cost)
                    self.G.add_edge(edge_id=self.G.edge_count,
                                    node_a=0,
                                    node_b=idx + 1)

            self.V_goal.clear()

            # check if an initial configuration fulfills the next constraint
            for v in self.G.V.values():
                if not np.isinf(v.value).any() and is_on_manifold(
                        self.task.manifolds[n + 1], v.value):
                    self.V_goal.append(v.id)

            if len(self.V_goal) == 0:
                self.grow_tree(curr_manifold=self.task.manifolds[n],
                               next_manifold=self.task.manifolds[n + 1])

            print('number of nodes in tree_' + str(n) + ' = ' +
                  str(len(self.G.V)))
            if len(self.V_goal) == 0:
                print('RRT extension did not reach any intersection nodes')
                return False
            else:
                print('number of goal nodes in tree_' + str(n) + ' = ' +
                      str(len(self.V_goal)))

            # store results for later evaluation
            self.G_list.append(self.G)
            self.V_goal_list.append(self.V_goal.copy())

        # compute optimal path
        opt_idx = min(self.V_goal,
                      key=lambda idx: np.linalg.norm(self.G.V[idx].cost))
        path_idx = self.G.comp_path(opt_idx)
        opt_path = [[self.G.V[idx].value for idx in path_idx]]
        opt_path_idx = [path_idx.copy()]
        opt_path_cost = self.G.V[opt_idx].cost

        for G, V_goal in zip(reversed(self.G_list[:-1]),
                             reversed(self.V_goal_list[:-1])):
            opt_idx = V_goal[path_idx[0] -
                             1]  # -1 offset due to virtual root node
            path_idx = G.comp_path(opt_idx)
            opt_path_idx.append(path_idx.copy())
            opt_path.append([G.V[idx].value for idx in path_idx])

        opt_path = list(reversed(opt_path))
        opt_path_idx = list(reversed(opt_path_idx))

        self.path = opt_path
        self.path_idx = opt_path_idx
        return True
class PSM:
    def __init__(self, task: Task, cfg: dict):
        self.name = 'PSM'
        self.n_manifolds = len(task.manifolds)
        self.task = task
        self.start = task.start
        self.n_samples = cfg['N']
        self.alpha = cfg['ALPHA']
        self.beta = cfg['BETA']
        self.eps = cfg['EPS']
        self.rho = cfg['RHO']
        self.r_max = cfg['R_MAX']
        self.collision_res = cfg['COLLISION_RES']
        self.d = task.d
        self.proj_step_size = cfg['PROJ_STEP_SIZE']

        self.lim_lo = task.lim_lo
        self.lim_up = task.lim_up
        self.gamma = np.power(2 * (1 + 1.0 / float(self.d)), 1.0 / float(self.d)) * \
                     np.power(get_volume(self.lim_lo, self.lim_up) / unit_ball_measure(self.d), 1. / float(self.d))

        self.Q_near_ids = []
        self.G = None
        self.G_list = []
        self.V_goal = []
        self.V_goal_list = []
        self.path = None
        self.path_id = None

        # check if start point is on first manifold
        if not is_on_manifold(task.manifolds[0], task.start, self.eps):
            raise Exception(
                'The start point is not on the manifold h(start)= ' +
                str(task.manifolds[0].y(task.start)))

        # check if start point is in configuration space limits
        if not self.task.is_valid_conf(task.start):
            raise Exception('The start point is not in the system limits.')

        # check if start point is in collision
        if self.task.is_collision_conf(task.start):
            raise Exception('The start point is in collision.')

    def run(self) -> bool:
        # iterate over sequence of manifolds
        for n in range(self.n_manifolds - 1):
            print('######################################################')
            print('n', n)
            print('Active Manifold: ', self.task.manifolds[n].name)
            print('Target Manifold: ', self.task.manifolds[n + 1].name)

            self.G = Tree(self.d, exact_nn=False)
            if n == 0:
                # init tree with start node
                self.G.add_node(node_id=0,
                                node_value=self.start,
                                node_cost=0.0,
                                inc_cost=0.0)
            else:
                # init tree with transition nodes
                self.G.abstract_root = True
                self.G.add_node(node_id=0,
                                node_value=np.ones(self.d) * np.inf,
                                node_cost=0.0,
                                inc_cost=0.0)  # virtual root node
                for idx, v_id in enumerate(self.V_goal):
                    node_id = self.G_list[-1].V[v_id]
                    self.G.add_node(node_id=idx + 1,
                                    node_value=node_id.value,
                                    node_cost=node_id.cost,
                                    inc_cost=node_id.cost)
                    self.G.add_edge(edge_id=self.G.edge_count,
                                    node_a=0,
                                    node_b=idx + 1)

            self.V_goal.clear()

            # check if an initial configuration fulfills the next constraint
            for v in self.G.V.values():
                if not np.isinf(v.value).any() and is_on_manifold(
                        self.task.manifolds[n + 1], v.value):
                    self.V_goal.append(v.id)

            if len(self.V_goal) == 0:
                self.grow_tree(curr_manifold=self.task.manifolds[n],
                               next_manifold=self.task.manifolds[n + 1])

            print('number of nodes in tree_' + str(n) + ' = ' +
                  str(len(self.G.V)))
            if len(self.V_goal) == 0:
                print('RRT extension did not reach any intersection nodes')
                return False
            else:
                print('number of goal nodes in tree_' + str(n) + ' = ' +
                      str(len(self.V_goal)))

            # store results for later evaluation
            self.G_list.append(self.G)
            self.V_goal_list.append(self.V_goal.copy())

        # compute optimal path
        opt_idx = min(self.V_goal,
                      key=lambda idx: np.linalg.norm(self.G.V[idx].cost))
        path_idx = self.G.comp_path(opt_idx)
        opt_path = [[self.G.V[idx].value for idx in path_idx]]
        opt_path_idx = [path_idx.copy()]
        opt_path_cost = self.G.V[opt_idx].cost

        for G, V_goal in zip(reversed(self.G_list[:-1]),
                             reversed(self.V_goal_list[:-1])):
            opt_idx = V_goal[path_idx[0] -
                             1]  # -1 offset due to virtual root node
            path_idx = G.comp_path(opt_idx)
            opt_path_idx.append(path_idx.copy())
            opt_path.append([G.V[idx].value for idx in path_idx])

        opt_path = list(reversed(opt_path))
        opt_path_idx = list(reversed(opt_path_idx))

        self.path = opt_path
        self.path_idx = opt_path_idx
        return True

    def steer(self, q_from: np.ndarray, q_from_id: int, q_to: np.ndarray,
              curr_manifold: Manifold, next_manifold: Manifold) -> np.ndarray:
        if np.random.rand() < self.beta and not self.G.V[q_from_id].con_extend:
            # steer towards next_manifolds
            self.G.V[q_from_id].con_extend = True
            yn = next_manifold.y(q_from)
            Jn = next_manifold.J(q_from)

            d = -Jn.T @ yn
            # project on current manifold
            J = null_space(curr_manifold.J(q_from))
            if J.shape[1] != 0:
                d = J @ J.T @ d

        else:
            # steer towards q_to
            d = (q_to - q_from)

            # project on current manifold
            J = null_space(curr_manifold.J(q_from))
            if J.shape[1] != 0:
                d = J @ J.T @ d

        if np.linalg.norm(d) > 0.0:
            q_new = q_from + self.alpha * d * (1.0 / np.linalg.norm(d))
            return q_new
        else:
            return None

    def is_collision(self, q_a: np.ndarray, q_b: np.ndarray) -> bool:
        N = int(ceil(np.linalg.norm(q_b - q_a) / self.collision_res))
        for i in range(N + 1):
            q = q_a if N == 0 else q_a + i / float(N) * (q_b - q_a)
            res = self.task.is_collision_conf(q)
            if res:
                return True
        return False

    def extend(self, q_from: np.ndarray, q_from_id: int, q_to: np.ndarray,
               q_to_id: int) -> bool:
        if self.is_collision(q_from, q_to):
            return False

        n = float(len(self.G.V))
        r = min(
            [self.gamma * np.power(np.log(n) / n, 1.0 / self.d), self.alpha])

        self.Q_near_ids = self.G.get_nearest_neighbors(node_value=q_to,
                                                       radius=r)

        c_min = self.G.V[q_from_id].cost + np.linalg.norm(q_from - q_to)
        c_min_inc = np.linalg.norm(q_from - q_to)
        q_min_idx = q_from_id
        for idx in self.Q_near_ids:
            q_idx = self.G.V[idx].value
            c_idx = self.G.V[idx].cost + np.linalg.norm(q_idx - q_to)

            if not self.is_collision(q_idx, q_to) and c_idx < c_min:
                c_min = c_idx
                c_min_inc = np.linalg.norm(q_idx - q_to)
                q_min_idx = idx

        self.G.add_node(node_id=q_to_id,
                        node_value=q_to,
                        node_cost=c_min,
                        inc_cost=c_min_inc)
        self.G.add_edge(edge_id=self.G.edge_count,
                        node_a=q_min_idx,
                        node_b=q_to_id)

        return True

    def rewire(self, q_from: np.ndarray, q_from_id: int):
        for idx in self.Q_near_ids:  # Q_near_ids was previously computed in extend function
            q_idx = self.G.V[idx].value
            c_idx = self.G.V[idx].cost
            c_new = self.G.V[q_from_id].cost + np.linalg.norm(q_from - q_idx)

            if not self.is_collision(q_from, q_idx) and c_new < c_idx:
                idx_parent = self.G.V[idx].parent
                self.G.remove_edge(idx_parent, idx)
                self.G.add_edge(edge_id=self.G.edge_count,
                                node_a=q_from_id,
                                node_b=idx)
                self.G.V[idx].cost = c_new
                self.G.V[idx].parent = q_from_id
                self.G.V[idx].inc_cost = np.linalg.norm(q_from - q_idx)
                self.G.update_child_costs(node_id=idx)

    def grow_tree(self, curr_manifold: Manifold, next_manifold: Manifold):
        curr_projector = Projection(f=curr_manifold.y,
                                    J=curr_manifold.J,
                                    step_size=self.proj_step_size)
        joint_manifold = ManifoldStack([curr_manifold, next_manifold])
        joint_projector = Projection(f=joint_manifold.y,
                                     J=joint_manifold.J,
                                     step_size=self.proj_step_size)

        pbar = tqdm.tqdm(total=self.n_samples)
        for i in range(self.n_samples):
            pbar.update()
            q_target = self.task.sample()
            q_near, q_near_id = self.G.get_nearest_neighbor(
                node_value=q_target)

            q_new = self.steer(q_near, q_near_id, q_target, curr_manifold,
                               next_manifold)

            if q_new is None:
                continue

            # project q_new on current or next manifold
            on_next_manifold = False
            if np.linalg.norm(
                    next_manifold.y(q_new)) < np.random.rand() * self.r_max:
                res, q_new_proj = joint_projector.project(q_new)
            else:
                res, q_new_proj = curr_projector.project(q_new)

            if not res:
                continue  # continue if projection was not successful

            # check if q_new_proj is on the next manifold
            if is_on_manifold(next_manifold, q_new_proj, self.eps):
                if len(self.V_goal) == 0:
                    on_next_manifold = True
                else:
                    q_proj_near = min(self.V_goal,
                                      key=lambda idx: np.linalg.norm(self.G.V[
                                          idx].value - q_new_proj))
                    if np.linalg.norm(self.G.V[q_proj_near].value -
                                      q_new_proj) > self.rho:
                        on_next_manifold = True
                    else:
                        continue  # continue if a node close to q_new_proj is already in the tree

            q_new_idx = self.G.node_count
            extended = self.extend(q_from=q_near,
                                   q_from_id=q_near_id,
                                   q_to=q_new_proj,
                                   q_to_id=q_new_idx)

            if extended:
                self.rewire(q_from=q_new_proj, q_from_id=q_new_idx)

                # add to V_goal if q_new is on the next manifold
                if on_next_manifold:
                    self.V_goal.append(q_new_idx)

        pbar.close()
        print('')
Beispiel #11
0
class RandomMMP:
    def __init__(self, task: Task, cfg: dict):
        self.name = 'Random_MMP'
        self.n_manifolds = len(task.manifolds)
        self.task = task
        self.start = task.start
        self.cfg = cfg
        self.n_samples = cfg['N']
        self.alpha = cfg['ALPHA']
        self.beta = cfg['BETA']
        self.eps = cfg['EPS']
        self.rho = cfg['RHO']
        self.r_max = cfg['R_MAX']
        self.collision_res = cfg['COLLISION_RES']
        self.d = task.d
        self.greedy = cfg['GREEDY']

        self.lim_lo = task.lim_lo
        self.lim_up = task.lim_up
        self.gamma = np.power(2 * (1 + 1.0 / float(self.d)), 1.0 / float(self.d)) * \
                     np.power(task.get_joint_space_volume() / unit_ball_measure(self.d), 1. / float(self.d))

        self.Q_near_ids = []
        self.G = None
        self.path = None
        self.path_id = None

        # check if start point is on first manifold
        if not is_on_manifold(task.manifolds[0], task.start, self.eps):
            raise Exception(
                'The start point is not on the manifold h(start)= ' +
                str(task.manifolds[0].y(task.start)))

    def run(self) -> bool:
        # iterate over sequence of manifolds
        self.G = Tree(self.d, exact_nn=False)
        self.G.add_node(node_id=0,
                        node_value=self.start,
                        node_cost=0.0,
                        inc_cost=0.0)
        self.G.V[0].aux = 0  # store manifold id for every node
        self.G.V[0].path = []

        for n in range(100):
            node_id = self.G.sample_node()
            curr_manifold_id = self.G.V[node_id].aux
            next_manifold_id = curr_manifold_id + 1
            q_start = self.G.V[node_id].value

            if is_on_manifold(self.task.manifolds[next_manifold_id], q_start):
                # move node directly to next manifold
                self.G.V[node_id].aux += 1
                q_reached = q_start
            else:
                # sample a goal configuration with IK
                curr_manifold = self.task.manifolds[curr_manifold_id]
                next_manifold = ManifoldStack(manifolds=[
                    self.task.manifolds[curr_manifold_id],
                    self.task.manifolds[next_manifold_id]
                ])

                ik_proj = Projection(f=next_manifold.y, J=next_manifold.J)
                res_proj = False
                while not res_proj:
                    q_rand = self.task.sample()
                    res_proj, q_goal = ik_proj.project(q_rand)
                    if not self.task.is_valid_conf(q_goal):
                        res_proj = False
                    if self.task.is_collision_conf(q_goal):
                        res_proj = False

                # plan path to goal configuration with RRT*
                rrt_task = Task('empty')
                rrt_task.start = q_start
                rrt_task.goal = q_goal
                rrt_task.obstacles = self.task.obstacles
                planner = RRTStarManifold(task=rrt_task,
                                          manifold=curr_manifold,
                                          cfg=self.cfg)
                path_idx, opt_path = planner.run()

                result = False
                if path_idx:
                    q_reached = planner.G.V[path_idx[-1]].value
                    if np.linalg.norm(q_reached - q_goal) < self.eps:
                        result = True

                if not result:
                    continue

                cost = path_cost(opt_path)
                node_id_new = self.G.node_count
                self.G.add_node(node_id=node_id_new,
                                node_value=q_reached,
                                node_cost=self.G.V[node_id].cost + cost,
                                inc_cost=cost)
                self.G.V[node_id_new].aux = next_manifold_id
                self.G.V[node_id_new].path = opt_path
                self.G.add_edge(edge_id=self.G.edge_count,
                                node_a=node_id,
                                node_b=node_id_new)

            if next_manifold_id == self.n_manifolds - 1:
                self.G.comp_opt_path(q_reached, self.eps)
                opt_path = [self.G.V[idx].path for idx in self.G.path[1:]]
                self.path = opt_path
                return True

        return False
Beispiel #12
0
    def run(self) -> bool:
        # iterate over sequence of manifolds
        self.G = Tree(self.d, exact_nn=False)
        self.G.add_node(node_id=0,
                        node_value=self.start,
                        node_cost=0.0,
                        inc_cost=0.0)
        self.G.V[0].aux = 0  # store manifold id for every node
        self.G.V[0].path = []

        for n in range(100):
            node_id = self.G.sample_node()
            curr_manifold_id = self.G.V[node_id].aux
            next_manifold_id = curr_manifold_id + 1
            q_start = self.G.V[node_id].value

            if is_on_manifold(self.task.manifolds[next_manifold_id], q_start):
                # move node directly to next manifold
                self.G.V[node_id].aux += 1
                q_reached = q_start
            else:
                # sample a goal configuration with IK
                curr_manifold = self.task.manifolds[curr_manifold_id]
                next_manifold = ManifoldStack(manifolds=[
                    self.task.manifolds[curr_manifold_id],
                    self.task.manifolds[next_manifold_id]
                ])

                ik_proj = Projection(f=next_manifold.y, J=next_manifold.J)
                res_proj = False
                while not res_proj:
                    q_rand = self.task.sample()
                    res_proj, q_goal = ik_proj.project(q_rand)
                    if not self.task.is_valid_conf(q_goal):
                        res_proj = False
                    if self.task.is_collision_conf(q_goal):
                        res_proj = False

                # plan path to goal configuration with RRT*
                rrt_task = Task('empty')
                rrt_task.start = q_start
                rrt_task.goal = q_goal
                rrt_task.obstacles = self.task.obstacles
                planner = RRTStarManifold(task=rrt_task,
                                          manifold=curr_manifold,
                                          cfg=self.cfg)
                path_idx, opt_path = planner.run()

                result = False
                if path_idx:
                    q_reached = planner.G.V[path_idx[-1]].value
                    if np.linalg.norm(q_reached - q_goal) < self.eps:
                        result = True

                if not result:
                    continue

                cost = path_cost(opt_path)
                node_id_new = self.G.node_count
                self.G.add_node(node_id=node_id_new,
                                node_value=q_reached,
                                node_cost=self.G.V[node_id].cost + cost,
                                inc_cost=cost)
                self.G.V[node_id_new].aux = next_manifold_id
                self.G.V[node_id_new].path = opt_path
                self.G.add_edge(edge_id=self.G.edge_count,
                                node_a=node_id,
                                node_b=node_id_new)

            if next_manifold_id == self.n_manifolds - 1:
                self.G.comp_opt_path(q_reached, self.eps)
                opt_path = [self.G.V[idx].path for idx in self.G.path[1:]]
                self.path = opt_path
                return True

        return False