Beispiel #1
0
def plotSpectralResolution(inFilePath, minWavelength=None, maxWavelength=None, decades=None, *, title=None,
                outDirPath=None, outFileName=None, outFilePath=None, figSize=(8, 5), interactive=None):

    # load the wavelength grid
    inFilePath = ut.absPath(inFilePath)
    if inFilePath.suffix.lower() == ".stab":
        table = stab.readStoredTable(inFilePath)
        if "lambda" not in table:
            raise ValueError("No wavelength axis in stored table: {}".format(inFilePath))
        grid = table["lambda"]
    elif inFilePath.suffix.lower() == ".dat":
        if "wavelength" not in sm.getColumnDescriptions(inFilePath)[0].lower():
            raise ValueError("First text column is not labeled 'wavelength': {}".format(inFilePath))
        grid = sm.loadColumns(inFilePath, "1")[0]
    elif inFilePath.suffix.lower() == ".fits":
        axes = sm.getFitsAxes(inFilePath)
        if len(axes) != 3:
            raise ValueError("FITS file does not have embedded wavelength axis")
        grid = axes[2]
    else:
        raise ValueError("Filename does not have the .stab, .dat, or .fits extension: {}".format(inFilePath))

    # calculate the spectral resolution
    R = grid[:-1] / (grid[1:] - grid[:-1])
    Rmax = R.max()

    # choose wavelength units from grid
    wunit = grid.unit

    # setup the plot
    plt.figure(figsize=figSize)
    plt.xlabel(sm.latexForWavelengthWithUnit(wunit), fontsize='large')
    plt.ylabel(r"$R=\frac{\lambda}{\Delta\lambda}$", fontsize='large')
    plt.xscale('log')
    plt.yscale('log')
    plt.grid(which='major', axis='both', ls=":")
    plt.xlim(_adjustWavelengthRange(plt.xlim(), wunit, minWavelength, maxWavelength))
    if decades is not None:
        plt.ylim(Rmax* 10 ** (-decades), Rmax * 10 ** 0.2)

    # plot the spectral resolution
    if title is None or len(title)==0: title = inFilePath.stem
    label = "{}\n{} pts from {:g} to {:g} {}".format(title, len(grid), grid[0].to_value(wunit), grid[-1].to_value(wunit),
                                              sm.latexForUnit(wunit))
    plt.plot(grid[:-1].to_value(wunit), R, label=label)
    plt.legend()

    # if not in interactive mode, save the figure; otherwise leave it open
    if not ut.interactive(interactive):
        saveFilePath = ut.savePath(inFilePath.stem+".pdf", (".pdf",".png"),
                                   outDirPath=outDirPath, outFileName=outFileName, outFilePath=outFilePath)
        plt.savefig(saveFilePath, bbox_inches='tight', pad_inches=0.25)
        plt.close()
        logging.info("Created {}".format(saveFilePath))
Beispiel #2
0
def plotDefaultDustTemperatureCuts(simulation,
                                   *,
                                   outDirPath=None,
                                   outFileName=None,
                                   outFilePath=None,
                                   figSize=None,
                                   interactive=None):

    # find the relevant probe
    probes = [
        probe for probe in simulation.probes()
        if probe.type() == "DefaultDustTemperatureCutsProbe"
    ]
    if len(probes) != 1:
        return
    probe = probes[0]

    # load the temperature cuts and the range of the x and y axes
    # (there can be one to three cuts depending on symmetries)
    paths = probe.outFilePaths("dust_T_*.fits")
    numcuts = len(paths)
    if not numcuts in (1, 2, 3):
        return
    cuts = [path.stem.split("_")[-1] for path in paths]
    frames = [sm.loadFits(path) for path in paths]
    grids = [sm.getFitsAxes(path) for path in paths]

    # determine the maximum temperature value to display
    Tmax = max([frame.max() for frame in frames])

    # setup the figure depending on the number of cuts
    if figSize is None: figSize = (8 * numcuts, 6)
    fig, axes = plt.subplots(ncols=numcuts, nrows=1, figsize=figSize)
    if numcuts == 1: axes = [axes]

    # plot the cuts and set axis details for each
    for ax, cut, frame, (xgrid, ygrid) in zip(axes, cuts, frames, grids):
        extent = (xgrid[0].value, xgrid[-1].value, ygrid[0].value,
                  ygrid[-1].value)
        im = ax.imshow(frame.value.T,
                       vmin=0,
                       vmax=Tmax.value,
                       cmap='gnuplot',
                       extent=extent,
                       aspect='auto',
                       interpolation='bicubic',
                       origin='lower')
        ax.set_xlim(xgrid[0].value, xgrid[-1].value)
        ax.set_ylim(ygrid[0].value, ygrid[-1].value)
        ax.set_xlabel(cut[0] + sm.latexForUnit(xgrid.unit), fontsize='large')
        ax.set_ylabel(cut[-1] + sm.latexForUnit(ygrid.unit), fontsize='large')
        ax.set_ylabel(cut[-1] + sm.latexForUnit(ygrid.unit), fontsize='large')

    # add a color bar
    fig.colorbar(im, ax=axes).ax.set_ylabel("T" + sm.latexForUnit(frame.unit),
                                            fontsize='large')

    # if not in interactive mode, save the figure; otherwise leave it open
    if not ut.interactive(interactive):
        saveFilePath = ut.savePath(simulation.outFilePath(
            "{}_dust_T.pdf".format(probe.name())), (".pdf", ".png"),
                                   outDirPath=outDirPath,
                                   outFileName=outFileName,
                                   outFilePath=outFilePath)
        plt.savefig(saveFilePath, bbox_inches='tight', pad_inches=0.25)
        plt.close()
        logging.info("Created {}".format(saveFilePath))
def plotDefaultMediaDensityCuts(simulation,
                                decades=5,
                                *,
                                outDirPath=None,
                                figSize=(18, 6),
                                interactive=None):

    # find the relevant probe
    probes = [
        probe for probe in simulation.probes()
        if probe.type() == "DefaultMediaDensityCutsProbe"
    ]
    if len(probes) != 1:
        return
    probe = probes[0]

    for medium in ("dust", "elec", "gas"):
        for cut in ("xy", "xz", "yz"):

            # load the theoretical and gridded cuts for the requested medium and cut plane
            tPaths = probe.outFilePaths("{}_t_{}.fits".format(medium, cut))
            gPaths = probe.outFilePaths("{}_g_{}.fits".format(medium, cut))
            if len(tPaths) == 1 and len(gPaths) == 1:
                tFrame = sm.loadFits(tPaths[0])
                gFrame = sm.loadFits(gPaths[0])

                # determine the range of the x and y axes
                xgrid, ygrid = sm.getFitsAxes(tPaths[0])

                # determine the range of density values to display and clip the data arrays
                vmax = max(tFrame.max(), gFrame.max())
                vmin = vmax / 10**decades
                tFrame[tFrame < vmin] = vmin
                gFrame[gFrame < vmin] = vmin

                # setup the figure
                fig, (ax1, ax2) = plt.subplots(ncols=2,
                                               nrows=1,
                                               figsize=figSize)

                # plot the cuts and a color bar (logarithmic normalizer crashes if all values are zero)
                if vmax > 0:
                    normalizer = matplotlib.colors.LogNorm(
                        vmin.value, vmax.value)
                else:
                    normalizer = matplotlib.colors.Normalize(
                        vmin.value, vmax.value)
                extent = (xgrid[0].value, xgrid[-1].value, ygrid[0].value,
                          ygrid[-1].value)
                im = ax1.imshow(tFrame.value.T,
                                norm=normalizer,
                                cmap='gnuplot',
                                extent=extent,
                                aspect='auto',
                                interpolation='bicubic',
                                origin='lower')
                fig.colorbar(im, ax=(ax1, ax2)).ax.set_ylabel(
                    "density" + sm.latexForUnit(tFrame.unit), fontsize='large')
                ax2.imshow(gFrame.value.T,
                           norm=normalizer,
                           cmap='gnuplot',
                           extent=extent,
                           aspect='auto',
                           interpolation='bicubic',
                           origin='lower')

                # set axis details
                ax1.set_xlim(xgrid[0].value, xgrid[-1].value)
                ax1.set_ylim(ygrid[0].value, ygrid[-1].value)
                ax2.set_xlim(xgrid[0].value, xgrid[-1].value)
                ax2.set_ylim(ygrid[0].value, ygrid[-1].value)
                ax1.set_xlabel(cut[0] + sm.latexForUnit(xgrid.unit),
                               fontsize='large')
                ax1.set_ylabel(cut[-1] + sm.latexForUnit(ygrid.unit),
                               fontsize='large')
                ax2.set_xlabel(cut[0] + sm.latexForUnit(xgrid.unit),
                               fontsize='large')
                ax2.set_ylabel(cut[-1] + sm.latexForUnit(ygrid.unit),
                               fontsize='large')

                # if not in interactive mode, save the figure; otherwise leave it open
                if not ut.interactive(interactive):
                    defSavePath = simulation.outFilePath("{}_{}_{}.pdf".format(
                        probe.name(), medium, cut))
                    saveFilePath = ut.savePath(defSavePath, (".pdf", ".png"),
                                               outDirPath=outDirPath)
                    plt.savefig(saveFilePath,
                                bbox_inches='tight',
                                pad_inches=0.25)
                    plt.close()
                    logging.info("Created {}".format(saveFilePath))
Beispiel #4
0
def plotPolarization(simulation,
                     *,
                     plotLinMap=True,
                     plotDegMap=False,
                     plotDegAvg=False,
                     plotCirMap=False,
                     wavelength=None,
                     binSize=(7, 7),
                     degreeScale=None,
                     decades=5,
                     outDirPath=None,
                     figSize=(8, 6),
                     interactive=None):

    # loop over all applicable instruments
    for instrument, filepath in sm.instrumentOutFilePaths(
            simulation, "stokesQ.fits"):
        # form the simulation/instrument name
        insname = "{}_{}".format(instrument.prefix(), instrument.name())

        # get the file paths for the frames/data cubes
        filepathI = instrument.outFilePaths("total.fits")[0]
        filepathQ = instrument.outFilePaths("stokesQ.fits")[0]
        filepathU = instrument.outFilePaths("stokesU.fits")[0]
        filepathV = instrument.outFilePaths("stokesV.fits")[0]

        # load datacubes with shape (nx, ny, nlambda)
        Is = sm.loadFits(filepathI)
        Qs = sm.loadFits(filepathQ)
        Us = sm.loadFits(filepathU)
        Vs = sm.loadFits(filepathV)

        # load the axes grids (assuming all files have the same axes)
        xgrid, ygrid, wavegrid = sm.getFitsAxes(filepathI)
        xmin = xgrid[0].value
        xmax = xgrid[-1].value
        ymin = ygrid[0].value
        ymax = ygrid[-1].value
        extent = (xmin, xmax, ymin, ymax)

        # determine binning configuration
        binX = binSize[0]
        orLenX = Is.shape[0]
        dropX = orLenX % binX
        startX = dropX // 2
        binY = binSize[1]
        orLenY = Is.shape[1]
        dropY = orLenY % binY
        startY = dropY // 2

        # construct arrays with central bin positions in pixel coordinates
        posX = np.arange(startX - 0.5 + binX / 2.0,
                         orLenX - dropX + startX - 0.5, binX)
        posY = np.arange(startY - 0.5 + binY / 2.0,
                         orLenY - dropY + startY - 0.5, binY)

        # determine the appropriate wavelength index or indices
        if wavelength is None:
            indices = [0]
        elif wavelength == 'all':
            indices = range(Is.shape[2])
        else:
            if not isinstance(wavelength, (list, tuple)):
                wavelength = [wavelength]
            indices = instrument.wavelengthIndices(wavelength)

        # loop over all requested wavelength indices
        for index in indices:
            wave = wavegrid[index]
            wavename = "{:09.4f}".format(wave.to_value(sm.unit("micron")))
            wavelatex = r"$\lambda={:.4g}$".format(
                wave.value) + sm.latexForUnit(wave)

            # extract the corresponding frame, and transpose to (y,x) style for compatibility with legacy code
            I = Is[:, :, index].T.value
            Q = Qs[:, :, index].T.value
            U = Us[:, :, index].T.value
            V = Vs[:, :, index].T.value

            # perform the actual binning
            binnedI = np.zeros((len(posY), len(posX)))
            binnedQ = np.zeros((len(posY), len(posX)))
            binnedU = np.zeros((len(posY), len(posX)))
            binnedV = np.zeros((len(posY), len(posX)))
            for x in range(len(posX)):
                for y in range(len(posY)):
                    binnedI[y, x] = np.sum(
                        I[startY + binY * y:startY + binY * (y + 1),
                          startX + binX * x:startX + binX * (x + 1)])
                    binnedQ[y, x] = np.sum(
                        Q[startY + binY * y:startY + binY * (y + 1),
                          startX + binX * x:startX + binX * (x + 1)])
                    binnedU[y, x] = np.sum(
                        U[startY + binY * y:startY + binY * (y + 1),
                          startX + binX * x:startX + binX * (x + 1)])
                    binnedV[y, x] = np.sum(
                        V[startY + binY * y:startY + binY * (y + 1),
                          startX + binX * x:startX + binX * (x + 1)])

            # -----------------------------------------------------------------

            # plot a linear polarization map
            if plotLinMap:
                fig, ax = plt.subplots(ncols=1, nrows=1, figsize=figSize)

                # configure the axes
                ax.set_xlim(xmin, xmax)
                ax.set_ylim(ymin, ymax)
                ax.set_xlabel("x" + sm.latexForUnit(xgrid), fontsize='large')
                ax.set_ylabel("y" + sm.latexForUnit(ygrid), fontsize='large')

                # determine intensity range for the background image, ignoring pixels with outrageously high flux
                Ib = I.copy()
                highmask = Ib > 1e6 * np.nanmedian(np.unique(Ib))
                vmax = np.nanmax(Ib[~highmask])
                Ib[highmask] = vmax
                vmin = vmax / 10**decades

                # plot the background image and the corresponding color bar
                normalizer = matplotlib.colors.LogNorm(vmin, vmax)
                cmap = plt.get_cmap('PuRd')
                cmap.set_under('w')
                backPlot = ax.imshow(Ib,
                                     norm=normalizer,
                                     cmap=cmap,
                                     extent=extent,
                                     aspect='equal',
                                     interpolation='bicubic',
                                     origin='lower')
                cbarlabel = sm.latexForSpectralFlux(Is) + sm.latexForUnit(
                    Is) + " @ " + wavelatex
                plt.colorbar(backPlot, ax=ax).set_label(cbarlabel,
                                                        fontsize='large')

                # compute the linear polarization degree
                degreeLD = np.sqrt(binnedQ**2 + binnedU**2)
                degreeLD[degreeLD > 0] /= binnedI[degreeLD > 0]

                # determine a characteristic 'high' degree of polarization in the frame
                # (this has to be done before degreeLD contains 'np.NaN')
                charDegree = np.percentile(degreeLD, 99.0)
                if not 0 < charDegree < 1:
                    charDegree = np.nanmax((np.nanmax(degreeLD), 0.0001))

                # remove pixels with minuscule polarization
                degreeLD[degreeLD < charDegree / 50] = np.NaN

                # determine the scaling so that the longest arrows do not to overlap with neighboring arrows
                if degreeScale is None:
                    degreeScale = _roundUp(charDegree)
                lengthScale = 2.2 * degreeScale * max(
                    float(len(posX)) / figSize[0],
                    float(len(posY)) / figSize[1])
                key = "{:.3g}%".format(100 * degreeScale)

                # compute the polarization angle
                angle = 0.5 * np.arctan2(
                    binnedU, binnedQ
                )  # angle from North through East while looking at the sky

                # create the polarization vector arrays
                xPolarization = -degreeLD * np.sin(
                    angle
                )  #For angle = 0: North & x=0, For angle = 90deg: West & x=-1
                yPolarization = degreeLD * np.cos(
                    angle
                )  #For angle = 0: North & y=1, For angle = 90deg: West & y=0

                # plot the vector field (scale positions to data coordinates)
                X, Y = np.meshgrid(xmin + posX * (xmax - xmin) / orLenX,
                                   ymin + posY * (ymax - ymin) / orLenY)
                quiverPlot = ax.quiver(X,
                                       Y,
                                       xPolarization,
                                       yPolarization,
                                       pivot='middle',
                                       units='inches',
                                       angles='xy',
                                       scale=lengthScale,
                                       scale_units='inches',
                                       headwidth=0,
                                       headlength=1,
                                       headaxislength=1,
                                       minlength=0.8,
                                       width=0.02)
                ax.quiverkey(quiverPlot,
                             0.85,
                             0.02,
                             degreeScale,
                             key,
                             coordinates='axes',
                             labelpos='E')

                # if not in interactive mode, save the figure; otherwise leave it open
                if not ut.interactive(interactive):
                    saveFilePath = ut.savePath(
                        filepath,
                        ".pdf",
                        outDirPath=outDirPath,
                        outFileName="{}_{}_pollinmap.pdf".format(
                            insname, wavename))
                    plt.savefig(saveFilePath,
                                bbox_inches='tight',
                                pad_inches=0.25)
                    plt.close()
                    logging.info("Created {}".format(saveFilePath))

            # -----------------------------------------------------------------

            # plot a linear polarization degree map
            if plotDegMap:
                fig, ax = plt.subplots(ncols=1, nrows=1, figsize=figSize)

                # configure the axes
                ax.set_xlim(xmin, xmax)
                ax.set_ylim(ymin, ymax)
                ax.set_xlabel("x" + sm.latexForUnit(xgrid), fontsize='large')
                ax.set_ylabel("y" + sm.latexForUnit(ygrid), fontsize='large')

                # calculate polarization degree for each pixel, in percent
                # set degree to zero for pixels with very low intensity
                cutmask = I < (np.nanmax(
                    I[I < 1e6 * np.nanmedian(np.unique(I))]) / 10**decades)
                degreeHD = np.sqrt(Q**2 + U**2)
                degreeHD[~cutmask] /= I[~cutmask]
                degreeHD[cutmask] = 0
                degreeHD *= 100

                # plot the image and the corresponding color bar
                vmax = degreeScale if degreeScale is not None else np.percentile(
                    degreeHD, 99)
                normalizer = matplotlib.colors.Normalize(vmin=0, vmax=vmax)
                backPlot = ax.imshow(degreeHD,
                                     norm=normalizer,
                                     cmap='plasma',
                                     extent=extent,
                                     aspect='equal',
                                     interpolation='bicubic',
                                     origin='lower')
                plt.colorbar(backPlot, ax=ax).set_label(
                    "Linear polarization degree (%)" + " @ " + wavelatex,
                    fontsize='large')

                # if not in interactive mode, save the figure; otherwise leave it open
                if not ut.interactive(interactive):
                    saveFilePath = ut.savePath(
                        filepath,
                        ".pdf",
                        outDirPath=outDirPath,
                        outFileName="{}_{}_poldegmap.pdf".format(
                            insname, wavename))
                    plt.savefig(saveFilePath,
                                bbox_inches='tight',
                                pad_inches=0.25)
                    plt.close()
                    logging.info("Created {}".format(saveFilePath))

            # -----------------------------------------------------------------

            # plot the y-axis averaged linear polarization degree
            if plotDegAvg:
                # construct the plot
                fig, ax = plt.subplots(ncols=1, nrows=1, figsize=figSize)
                degreeHD = np.sqrt(
                    np.average(Q, axis=0)**2 + np.average(U, axis=0)**2)
                degreeHD /= np.average(I, axis=0)
                ax.plot(xgrid.value, degreeHD * 100)
                ax.set_xlim(xmin, xmax)
                ax.set_ylim(0, degreeScale)
                ax.set_title("{}   {}".format(insname, wavelatex),
                             fontsize='large')
                ax.set_xlabel("x" + sm.latexForUnit(xgrid), fontsize='large')
                ax.set_ylabel('Average linear polarization degree (%)',
                              fontsize='large')

                # if not in interactive mode, save the figure; otherwise leave it open
                if not ut.interactive(interactive):
                    saveFilePath = ut.savePath(
                        filepathI,
                        ".pdf",
                        outDirPath=outDirPath,
                        outFileName="{}_{}_poldegavg.pdf".format(
                            insname, wavename))
                    plt.savefig(saveFilePath,
                                bbox_inches='tight',
                                pad_inches=0.25)
                    plt.close()
                    logging.info("Created {}".format(saveFilePath))

            # -----------------------------------------------------------------

            # plot a circular polarization map
            if plotCirMap:
                fig, ax = plt.subplots(ncols=1, nrows=1, figsize=figSize)

                # configure the axes
                ax.set_xlim(xmin, xmax)
                ax.set_ylim(ymin, ymax)
                ax.set_xlabel("x" + sm.latexForUnit(xgrid), fontsize='large')
                ax.set_ylabel("y" + sm.latexForUnit(ygrid), fontsize='large')

                # determine intensity range for the background image, ignoring pixels with outrageously high flux
                Ib = I.copy()
                highmask = Ib > 1e6 * np.nanmedian(np.unique(Ib))
                vmax = np.nanmax(Ib[~highmask])
                Ib[highmask] = vmax
                vmin = vmax / 10**decades

                # plot the background image and the corresponding color bar
                normalizer = matplotlib.colors.LogNorm(vmin, vmax)
                cmap = plt.get_cmap('PuRd')
                cmap.set_under('w')
                backPlot = ax.imshow(Ib,
                                     norm=normalizer,
                                     cmap=cmap,
                                     extent=extent,
                                     aspect='equal',
                                     interpolation='bicubic',
                                     origin='lower')
                cbarlabel = sm.latexForSpectralFlux(Is) + sm.latexForUnit(
                    Is) + " @ " + wavelatex
                plt.colorbar(backPlot, ax=ax).set_label(cbarlabel,
                                                        fontsize='large')

                # compute the circular polarization degree
                degreeLD = binnedV.copy()
                degreeLD[binnedI > 0] /= binnedI[binnedI > 0]

                # determine the scaling and add legend
                if degreeScale is None:
                    degreeScale = _roundUp(np.percentile(np.abs(degreeLD), 99))
                lengthScale = 0.7 / max(len(posX), len(posY))
                _circArrow(ax, 0.84 - lengthScale / 2, 0.01 + lengthScale / 2,
                           lengthScale)
                key = r'$+{} \%$'.format(100 * degreeScale)
                ax.text(0.85,
                        0.01 + lengthScale / 2,
                        key,
                        transform=ax.transAxes,
                        ha='left',
                        va='center')

                # actual plotting
                for x in range(len(posX)):
                    for y in range(len(posY)):
                        if np.isfinite(degreeLD[y, x]) and abs(
                                degreeLD[y, x]) > degreeScale / 50:
                            _circArrow(
                                ax, posX[x] / orLenX, posY[y] / orLenY,
                                degreeLD[y, x] / degreeScale * lengthScale)

                # if not in interactive mode, save the figure; otherwise leave it open
                if not ut.interactive(interactive):
                    saveFilePath = ut.savePath(
                        filepath,
                        ".pdf",
                        outDirPath=outDirPath,
                        outFileName="{}_{}_polcirmap.pdf".format(
                            insname, wavename))
                    plt.savefig(saveFilePath,
                                bbox_inches='tight',
                                pad_inches=0.25)
                    plt.close()
                    logging.info("Created {}".format(saveFilePath))
Beispiel #5
0
def plotMagneticFieldCuts(simulation,
                          *,
                          binSize=(32, 32),
                          outDirPath=None,
                          figSize=(6, 6),
                          interactive=None):

    # find the relevant probes
    probes = [ probe for probe in simulation.probes() \
               if probe.type() in ("DefaultMagneticFieldCutsProbe", "PlanarMagneticFieldCutsProbe") ]

    # iterate over them
    for probe in probes:
        for cut in ("xy", "xz", "yz"):

            # load magnetic field for the this probe and cut
            paths = probe.outFilePaths("{}.fits".format(cut))
            if len(paths) == 1:

                # load data cube with shape (nx, ny, 3)
                Bs = sm.loadFits(paths[0])

                # load the axes grids
                xgrid, ygrid, dummygrid = sm.getFitsAxes(paths[0])
                xmin = xgrid[0].value
                xmax = xgrid[-1].value
                ymin = ygrid[0].value
                ymax = ygrid[-1].value
                extent = (xmin, xmax, ymin, ymax)

                # determine binning configuration
                binX = binSize[0]
                orLenX = Bs.shape[0]
                dropX = orLenX % binX
                startX = dropX // 2
                binY = binSize[1]
                orLenY = Bs.shape[1]
                dropY = orLenY % binY
                startY = dropY // 2

                # construct arrays with central bin positions in pixel coordinates
                posX = np.arange(startX - 0.5 + binX / 2.0,
                                 orLenX - dropX + startX - 0.5, binX)
                posY = np.arange(startY - 0.5 + binY / 2.0,
                                 orLenY - dropY + startY - 0.5, binY)

                # perform the actual binning, while splitting in vector components
                Bx = np.zeros((len(posX), len(posY)))
                By = np.zeros((len(posX), len(posY)))
                Bz = np.zeros((len(posX), len(posY)))
                for x in range(len(posX)):
                    for y in range(len(posY)):
                        Bx[x, y] = np.mean(
                            Bs[startX + binX * x:startX + binX * (x + 1),
                               startY + binY * y:startY + binY * (y + 1),
                               0].value)
                        By[x, y] = np.mean(
                            Bs[startX + binX * x:startX + binX * (x + 1),
                               startY + binY * y:startY + binY * (y + 1),
                               1].value)
                        Bz[x, y] = np.mean(
                            Bs[startX + binX * x:startX + binX * (x + 1),
                               startY + binY * y:startY + binY * (y + 1),
                               2].value)

                # start the figure
                fig, ax = plt.subplots(ncols=1, nrows=1, figsize=figSize)

                # configure the axes
                ax.set_xlim(xmin, xmax)
                ax.set_ylim(ymin, ymax)
                ax.set_xlabel(cut[0] + sm.latexForUnit(xgrid),
                              fontsize='large')
                ax.set_ylabel(cut[-1] + sm.latexForUnit(ygrid),
                              fontsize='large')
                ax.set_aspect('equal')

                # determine a characteristic 'large' field strength in the cut plane
                Bmax = np.percentile(np.sqrt(Bx**2 + By**2), 99.0)
                if Bmax == 0: Bmax = 1  # guard against all zeros

                # determine the scaling so that the longest arrows do not to overlap with neighboring arrows
                lengthScale = 2 * Bmax * max(
                    float(len(posX)) / figSize[0],
                    float(len(posY)) / figSize[1])
                key = "{:.3g}{}".format(Bmax, sm.latexForUnit(Bs))

                # determine the color scheme for the component orthogonal to cut plane
                Bzmax = np.abs(Bz).max()
                if Bzmax == 0: Bzmax = 1  # guard against all zeros
                normalizer = matplotlib.colors.Normalize(-Bzmax, Bzmax)

                # plot the vector field (scale positions to data coordinates)
                X, Y = np.meshgrid(xmin + posX * (xmax - xmin) / orLenX,
                                   ymin + posY * (ymax - ymin) / orLenY,
                                   indexing='ij')
                quiverPlot = ax.quiver(X,
                                       Y,
                                       Bx,
                                       By,
                                       Bz,
                                       cmap='jet',
                                       norm=normalizer,
                                       pivot='middle',
                                       units='inches',
                                       angles='xy',
                                       scale=lengthScale,
                                       scale_units='inches',
                                       width=0.015,
                                       headwidth=2.5,
                                       headlength=2,
                                       headaxislength=2,
                                       minlength=0.8)
                ax.quiverkey(quiverPlot,
                             0.8,
                             -0.08,
                             Bmax,
                             key,
                             coordinates='axes',
                             labelpos='E')

                # if not in interactive mode, save the figure; otherwise leave it open
                if not ut.interactive(interactive):
                    saveFilePath = ut.savePath(simulation.outFilePath(
                        "{}_B_{}.pdf".format(probe.name(), cut)),
                                               (".pdf", ".png"),
                                               outDirPath=outDirPath)
                    plt.savefig(saveFilePath,
                                bbox_inches='tight',
                                pad_inches=0.25)
                    plt.close()
                    logging.info("Created {}".format(saveFilePath))