Beispiel #1
0
def compute_series_truncations(f,x,y,alpha,T):
    """
    Computes the Puiseux series expansions at the `x`-point `x=a` with
    the necessary number of terms in order to compute the integral
    basis of the algebraic functions field corresponding to `f`. The
    Puiseux series is returned in parametric form for computational
    efficiency. (Sympy doesn't do as well with fractional exponents.)
    """
    # compute the first terms of the Puiseux series expansions
    p = puiseux(f,x,y,alpha,nterms=1,parametric=False)
    
    # compute the expansion bounds
    N = compute_expansion_bounds(p,x,alpha)
    Nmax = max(N)

    # compute Puiseux series and truncate using the expansion bounds.
    r = puiseux(f,x,y,alpha,degree_bound=Nmax)
    n = len(r)

    for i in xrange(n):
        ri = r[i].subs(x,x+alpha).expand(log=False,power_base=False,
                                         power_exp=False,multinomial=False,
                                         basic=False,force=True)
        terms = ri.collect(x,evaluate=False)
        ri_trunc = sum( coeff*term for term,coeff in terms.iteritems()
                        if term.as_coeff_exponent(x)[1] < N[i] )
        r[i] = ri_trunc

    return r
Beispiel #2
0
def _delta_invariant(f,x,y,singular_pt):
    """
    Returns the delta invariant corresponding to the singular point
    `singular_pt` = [alpha, beta, gamma] on the plane algebraic curve
    f(x,y) = 0.
    """
    # compute the Puiseux series at the projective point [alpha,
    # beta, gamma]. If on the line at infinity, make the
    # appropriate variable transformation.
    g,u,v,u0,v0 = _transform(f,x,y,singular_pt)

    # compute Puiseux expansions at u=u0 and filter out
    # only those with v(t=0) == v0
    P = puiseux(g,u,v,u0,nterms=1,parametric=_t)
    P_v0 = [(X,Y) for X,Y in P if Y.subs(_t,0) == v0]
    P_v0_x = []
    for X,Y in P_v0:
        solns = sympy.solve(u-X,_t)
        P_v0_x.append(Y.subs(_t,solns[0]).simplify().collect(u-u0))
    P_x = puiseux(g,u,v,u0,nterms=1,parametric=False)

    # for each place compute its contribution to the delta invariant
    delta = sympy.Rational(0,1)
    for i in range(len(P_v0_x)):
        yhat  = P_v0_x[i]
        j     = P_x.index(yhat)
        IntPj = Int(j,P_x,u,u0)
        rj    = (P[i][0]-u0).expand().leadterm(_t)[1]
        delta += sympy.Rational(rj * IntPj - rj + 1, 2)

    return int(delta)
Beispiel #3
0
def _multiplicity(f,x,y,singular_pt):
    """
    Returns the multiplicity of the place (alpha : beta : 1) from the
    Puiseux series P at the place.

    For each (parametric) Puiseux series
        
        Pj = { x = x(t)
             { y = y(t) 
    
    at (alpha : beta : 1) the contribution from Pj to the multiplicity
    is min( deg x(t), deg y(t) ).
    """
    # compute the Puiseux series at the projective point [alpha,
    # beta, gamma]. If on the line at infinity, make the
    # appropriate variable transformation.
    g,u,v,u0,v0 = _transform(f,x,y,singular_pt)

    # compute Puiseux expansions at u=u0 and filter out
    # only those with v(t=0) == v0
    P = puiseux(g,u,v,u0,nterms=1,parametric=_t)

    m = 0
    for X,Y in P:
        X = X - u0                      # Shift so no constant
        Y = Y - v0                      # term remains.
        ri = abs( X.leadterm(_t)[1] )   # Get order of lead term
        si = abs( Y.leadterm(_t)[1] )
        m += min(ri,si)

    return int(m)
Beispiel #4
0
def _branching_number(f,x,y,singular_pt):
    """
    Returns the branching number of the place [alpha : beta : 1]
    from the Puiseux series P at the place.
        
    The braching number is simply the number of distinct branches
    (i.e. non-interacting branches) at the place. In parametric form,
    this is simply the number of Puiseux series at the place.
    """
    # compute the Puiseux series at the projective point [alpha,
    # beta, gamma]. If on the line at infinity, make the
    # appropriate variable transformation.
    g,u,v,u0,v0 = _transform(f,x,y,singular_pt)

    # compute Puiseux expansions at u=u0 and filter out
    # only those with v(t=0) == v0
    P = puiseux(g,u,v,u0,nterms=1,parametric=_t)
    P_v0 = [(X,Y) for X,Y in P if Y.subs(_t,0) == v0]

    return len(P_v0)