Beispiel #1
0
def show(data, arg_dict):
    """Display the mean value, estimated auto-correlaton and error
    thereof."""
    for label in sorted(data.keys()):
        print "* label:", label
        for o in arg_dict["orders"]:
            print "   * order:", o
            mean, delta, tint, dtint = tauint(data[label].data, o, plots=arg_dict["uwplot"])
            print "      mean:", pretty_print(mean, delta)
            print "      tint:", pretty_print(tint, dtint)
Beispiel #2
0
def show(data, arg_dict):
    """Display the mean value, estimated auto-correlaton and error
    thereof."""
    for label in sorted(data.keys()):
        print "* label:", label
        for o in arg_dict["orders"]:
            print "   * order:", o
            mean, delta, tint, dtint = tauint(data[label].data,
                                              o,
                                              plots=arg_dict['uwplot'])
            print "      mean:", pretty_print(mean, delta)
            print "      tint:", pretty_print(tint, dtint)
Beispiel #3
0
def therm(data, arg_dict):
    """Estimate thermalization effects, make a plot."""
    for label in sorted(data.keys()):
        print "* label:", label
        for o in arg_dict["orders"]:
            ydata = []
            dydata = []
            print "   * order:", o
            for nc in arg_dict["cutoffs"]:
                mean, delta, tint, dtint = tauint(data[label].data[:, :, nc:], o)
                ydata.append(mean)
                dydata.append(delta)
            plt.errorbar(arg_dict["cutoffs"], ydata, yerr=dydata)
            plt.show()
Beispiel #4
0
def therm(data, arg_dict):
    """Estimate thermalization effects, make a plot."""
    for label in sorted(data.keys()):
        print "* label:", label
        for o in arg_dict["orders"]:
            ydata = []
            dydata = []
            print "   * order:", o
            for nc in arg_dict['cutoffs']:
                mean, delta, tint, dtint = \
                    tauint(data[label].data[:,:,nc:], o)
                ydata.append(mean)
                dydata.append(delta)
            plt.errorbar(arg_dict['cutoffs'], ydata, yerr=dydata)
            plt.show()
Beispiel #5
0
 def test_with_correlated_data_single_replicum(self):
     r"""Check the :class:`puwr.tauint` method with the
     :class:`puwr.correlated_data` method. Note that this is a
     statistical test with random numbers. We test for a
     :math:`3\sigma` deviation here, which is unlikely but not
     impossible. If this test fails, re-run a few times before
     making any conclusions."""
     fails = 0
     for known_tau in np.linspace(2, 20, 20):
         data = correlated_data(known_tau)
         mean, err, tau, dtau = tauint(data, 0)
         if tau - 3*dtau > known_tau or \
             tau + 3*dtau < known_tau:
             print tau - known_tau, dtau
             fails += 1
     self.assertGreaterEqual(1, fails)
Beispiel #6
0
 def test_secondary_multiple_replica_product(self):
     """Test using the product of two observables."""
     fails = 0
     for known_tau in np.linspace(2,20,10):
         data = [[correlated_data(known_tau)[0][0],
                  correlated_data(known_tau)[0][0],
                  correlated_data(known_tau)[0][0]],
                 [correlated_data(known_tau)[0][0],
                  correlated_data(known_tau)[0][0],
                  correlated_data(known_tau)[0][0]]]
         mean, err, tau, dtau = tauint(data, lambda x, y: x * y)
         if tau - 3*dtau > known_tau or \
             tau + 3*dtau < known_tau:
             print tau - known_tau, dtau
             fails += 1
     self.assertGreaterEqual(0, fails)
Beispiel #7
0
 def test_with_correlated_data_single_replicum(self):
     r"""Check the :class:`puwr.tauint` method with the
     :class:`puwr.correlated_data` method. Note that this is a
     statistical test with random numbers. We test for a
     :math:`3\sigma` deviation here, which is unlikely but not
     impossible. If this test fails, re-run a few times before
     making any conclusions."""
     fails = 0
     for known_tau in np.linspace(2,20,20):
         data = correlated_data(known_tau)
         mean, err, tau, dtau = tauint(data, 0)
         if tau - 3*dtau > known_tau or \
             tau + 3*dtau < known_tau:
             print tau - known_tau, dtau
             fails += 1
     self.assertGreaterEqual(1, fails)
Beispiel #8
0
def extrapolate(data, arg_dict, f=(lambda x: 1., lambda x: x)):
    """Extrapolate data. Optionally make a plot."""
    # check if target lattice sizes are given
    # if not, do the extrapolation for all lattice sizes
    if not arg_dict['L_sizes']:
        arg_dict['L_sizes'] = sorted(set([d.L for d in data.values()]))
    for o in arg_dict["orders"]:
        print "  * order = g^" + str(o)
        x, y, dy, cl, dcl, ffn = [], [], [], [], [], []
        for L in arg_dict['L_sizes']:
            print "    * L =", L
            [i.append([]) for i in x, y, dy]
            for label in data:
                if data[label].L != L:
                    continue
                print "    ** label:", label
                mean, delta, tint, dtint = \
                    tauint(data[label].data, o, plots=arg_dict['uwplot'])
                x[-1].append(data[label].tau)
                y[-1].append(mean)
                dy[-1].append(delta)
                print "      mean:", pretty_print(mean, delta)
                print "      tint:", pretty_print(tint, dtint)
            print "    ** tau -> 0 limit"
            coeffs, errors = extrapolate_cl(f, x[-1], y[-1], dy[-1])
            ffn.append(
                lambda x: np.sum(c[0, 0] * f(x) for c, f in zip(coeffs, f)))
            cl.append(coeffs[0, 0])
            dcl.append(errors[0, 0]**0.5)
            sxsq = sum(xx**2 for xx in x[-1])
            sx = sum(x[-1])
            sa = np.sqrt(
                sum(((sxsq - sx * xx) / (3 * sxsq - sx**2))**2 * yy**2
                    for xx, yy in zip(x[-1], dy[-1])))
            assert (abs((dcl[-1] - sa) / sa) < 1e-12)
            print "      cl:", pretty_print(cl[-1], dcl[-1])
            print "      " + "*" * 50

            for plt in (p for p in arg_dict["mk_plots"]
                        if L in p.L and o in p.orders):
                plt.data.append((x[-1], y[-1], dy[-1]))
                plt.cl.append((cl[-1], dcl[-1]))
                fnx = np.linspace(0, max(x[-1]), 100)
                plt.fit.append((fnx, [ffn[-1](i) for i in fnx]))
                plt.labels.append("$L = {0}$".format(L))
    for plt in arg_dict["mk_plots"]:
        mk_plot(plt)
Beispiel #9
0
def extrapolate(data, arg_dict, f=(lambda x: 1.0, lambda x: x)):
    """Extrapolate data. Optionally make a plot."""
    # check if target lattice sizes are given
    # if not, do the extrapolation for all lattice sizes
    if not arg_dict["L_sizes"]:
        arg_dict["L_sizes"] = sorted(set([d.L for d in data.values()]))
    for o in arg_dict["orders"]:
        print "  * order = g^" + str(o)
        x, y, dy, cl, dcl, ffn = [], [], [], [], [], []
        for L in arg_dict["L_sizes"]:
            print "    * L =", L
            [i.append([]) for i in x, y, dy]
            for label in data:
                if data[label].L != L:
                    continue
                print "    ** label:", label
                mean, delta, tint, dtint = tauint(data[label].data, o, plots=arg_dict["uwplot"])
                x[-1].append(data[label].tau)
                y[-1].append(mean)
                dy[-1].append(delta)
                print "      mean:", pretty_print(mean, delta)
                print "      tint:", pretty_print(tint, dtint)
            print "    ** tau -> 0 limit"
            coeffs, errors = extrapolate_cl(f, x[-1], y[-1], dy[-1])
            ffn.append(lambda x: np.sum(c[0, 0] * f(x) for c, f in zip(coeffs, f)))
            cl.append(coeffs[0, 0])
            dcl.append(errors[0, 0] ** 0.5)
            sxsq = sum(xx ** 2 for xx in x[-1])
            sx = sum(x[-1])
            sa = np.sqrt(sum(((sxsq - sx * xx) / (3 * sxsq - sx ** 2)) ** 2 * yy ** 2 for xx, yy in zip(x[-1], dy[-1])))
            assert abs((dcl[-1] - sa) / sa) < 1e-12
            print "      cl:", pretty_print(cl[-1], dcl[-1])
            print "      " + "*" * 50

            for plt in (p for p in arg_dict["mk_plots"] if L in p.L and o in p.orders):
                plt.data.append((x[-1], y[-1], dy[-1]))
                plt.cl.append((cl[-1], dcl[-1]))
                fnx = np.linspace(0, max(x[-1]), 100)
                plt.fit.append((fnx, [ffn[-1](i) for i in fnx]))
                plt.labels.append("$L = {0}$".format(L))
    for plt in arg_dict["mk_plots"]:
        mk_plot(plt)
Beispiel #10
0
 def test_secondary_multiple_replica_product(self):
     """Test using the product of two observables."""
     fails = 0
     for known_tau in np.linspace(2, 20, 10):
         data = [[
             correlated_data(known_tau)[0][0],
             correlated_data(known_tau)[0][0],
             correlated_data(known_tau)[0][0]
         ],
                 [
                     correlated_data(known_tau)[0][0],
                     correlated_data(known_tau)[0][0],
                     correlated_data(known_tau)[0][0]
                 ]]
         mean, err, tau, dtau = tauint(data, lambda x, y: x * y)
         if tau - 3*dtau > known_tau or \
             tau + 3*dtau < known_tau:
             print tau - known_tau, dtau
             fails += 1
     self.assertGreaterEqual(0, fails)
Beispiel #11
0
        if alpha < np.random.random(1):  # reject
            Z[i + 1, :] = Z[i, :]
            lPex[i + 1] = lPex[i]
            lPz[i + 1] = lPz[i]
            num_of_rejects = num_of_rejects + 1

    print('rejection rate = ' + repr((num_of_rejects * 100.0) / M))

    # QoI = Quantile function
    q = 0.05
    theta1 = np.exp(Z[:, 0])
    theta2 = Z[:, d + 1]
    q_post = theta1 * ((-np.log(q))**(1.0 / theta2))
    # IACT -- only works in python 2.7 due to bad print
    try:
        dumpmean, delta, tint, d_tint = puwr.tauint(
            np.reshape(Z.T, [d + 2, 1, M]), 0)
        tau[irun] = tint * 2.0
    except:
        pass

    print('tau = ' + repr(tau[irun]))
    q_post = np.mean(q_post)
    print('Mean quantile = ' + repr(q_post))
    Q_py[irun] = q_post

print('')
print('TT Shock absorber completed. Some average values:')
print('Q_py = ' + repr(np.mean(Q_py)) + ' +- ' +
      repr(np.sqrt(np.sum((Q_py - np.mean(Q_py))**2) / (runs - 1))))
try:
    print('tau = ' + repr(np.mean(tau)) + ' +- ' +