Beispiel #1
0
    def test_all_features(self):

        if self.matlab_engine is None:
            self.skipTest("Matlab engine not available")

        # WhiteNoise input
        fs = 44100
        x_py = np.random.uniform(-1, 1, size=(fs // 2, 1))  # 0.5 sec
        x_m = matlab.double(x_py.tolist())

        for feature in pyACA.getFeatureList():
            self.logger.info('Testing feature:' + feature)
            v_out_py, t_py = pyACA.computeFeature(feature, x_py, fs)
            # Note: fs must be float when passing to Matlab
            v_out_m, t_m = self.matlab_engine.ComputeFeature(feature,
                                                             x_m,
                                                             float(fs),
                                                             nargout=2)

            v_out_py = v_out_py.squeeze()
            v_out_m = np.asarray(v_out_m).squeeze()

            with self.subTest(msg=feature):
                npt.assert_almost_equal(
                    v_out_py,
                    v_out_m,
                    decimal=7,
                    err_msg="MATLAB crosscheck test failed for " + feature)
Beispiel #2
0
    def test_compute_feature_num_blocks(self):
        blockLength = 256  # Using smaller blocksize to reduce time required to test (~7.3 sec)
        hopLength = 128
        fs = 44100
        inputData = np.random.uniform(-1, 1, size=(2 * blockLength, 1))

        for inputSize in range(1, 2 * blockLength):
            x = inputData[:inputSize]
            expectedNumBlocks = self.calcNumBlocks(x.size + blockLength,
                                                   blockLength, hopLength)
            for feature in pyACA.getFeatureList('all'):
                with self.subTest(msg=feature + ':' + str(inputSize)):
                    out, t = pyACA.computeFeature(feature,
                                                  x,
                                                  fs,
                                                  iBlockLength=blockLength,
                                                  iHopLength=hopLength)
                    npt.assert_equal(out.shape[-1], expectedNumBlocks)
Beispiel #3
0
    def test_spectral_features_for_1d_input(self):
        fs = 44100
        X = np.zeros(1025)

        features = pyACA.getFeatureList('spectral')
        features.remove('SpectralMfccs')
        features.remove('SpectralPitchChroma')

        for feature in features:
            with self.subTest(msg=feature):
                featureFunc = getattr(pyACA, "Feature" + feature)
                out = featureFunc(X, fs)
                npt.assert_equal(out.shape, ())

        with self.subTest(msg='SpectralMfccs'):
            out = pyACA.FeatureSpectralMfccs(X, fs)
            npt.assert_equal(out.shape, (13, ))

        with self.subTest(msg='SpectralPitchChroma'):
            out = pyACA.FeatureSpectralPitchChroma(X, fs)
            npt.assert_equal(out.shape, (12, ))
Beispiel #4
0
    def test_spectral_features_for_2d_input(self):
        fs = 44100
        features = pyACA.getFeatureList('spectral')
        features.remove('SpectralMfccs')
        features.remove('SpectralPitchChroma')

        # Test for 2d input with only one block
        X = np.zeros((1025, 1))

        for feature in features:
            with self.subTest(msg=feature):
                featureFunc = getattr(pyACA, "Feature" + feature)
                out = featureFunc(X, fs)
                npt.assert_equal(out.shape, (1, ))

        with self.subTest(msg='SpectralMfccs'):
            out = pyACA.FeatureSpectralMfccs(X, fs)
            npt.assert_equal(out.shape, (13, 1))

        with self.subTest(msg='SpectralPitchChroma'):
            out = pyACA.FeatureSpectralPitchChroma(X, fs)
            npt.assert_equal(out.shape, (12, 1))

        # Test for 2d input with only multiple block
        X = np.zeros((1025, 16))

        for feature in features:
            with self.subTest(msg=feature):
                featureFunc = getattr(pyACA, "Feature" + feature)
                out = featureFunc(X, fs)
                npt.assert_equal(out.shape, (16, ))

        with self.subTest(msg='SpectralMfccs'):
            out = pyACA.FeatureSpectralMfccs(X, fs)
            npt.assert_equal(out.shape, (13, 16))

        with self.subTest(msg='SpectralPitchChroma'):
            out = pyACA.FeatureSpectralPitchChroma(X, fs)
            npt.assert_equal(out.shape, (12, 16))