Beispiel #1
0
    def getEff(self,emu,event_weight):
        """
        Get efficiency and save to histogram
        """
        custom_vars    = addData.custom_variables(self.ttree,self.p_custom_vars,self.event_objects)
        eff_conditions = self.p_settings.get(self.p_cfg_name,'eff_y').split(',') # things like ==1
        logic_operator = [] 
        good_condition = []
        for ec,eff_c in enumerate(eff_conditions):
            value = re.search(r'\d+',eff_c).group()  # '==1' -> 1
            cond  = eff_c.split(value)[0]            # '==1' -> '=='
            if eff_c.endswith('.'):
                good_condition.append( float(value) )
            else:
                good_condition.append( int(value) )
            logic_operator.append( cond  )

        # self.p_eff_x_vars # loop variables that we are getting the efficiency as a function of!
        # self.p_variables  # loop variables that we are getting the efficiency of!

        for eff_x_var in self.p_eff_x_vars:
            for vv,variable in enumerate(self.p_variables):
        
                eff_c = value = re.search(r'\d+',self.eff_conditions[vv]).group()  # '==1' -> 1
                if eff_x_var in custom_vars.keys():
                    eff_x_val = custom_vars[eff_x_var] # getattr( reco,quantity )()
                else:
                    eff_x_val = None 
                    # set it somewhere else; user needs to do this! (too modular...)
                    # something like the object pT (below) or another object's pT (define here)

                _values = {'total':[],'good':[],'mis':[]}
                reco_name,attr = variable.split('_')
                quantity       = self.key2attr[attr.lower()]
                truth_name     = self.truthObj[reco_name]['name']
                dr_match       = self.truthObj[reco_name]['dr']  # deltaR match value
                reco_object    = self.event_objects[reco_name]
                truth_object   = self.event_objects[truth_name]

                # -- DeltaR match and fill hists
                #    loop over objects (if more than 1)
                if type(reco_object)==list:
                    for reco in reco_object:
                        # fill total (matched)
                        if reco.DeltaR(truth_object) < dr_match:
                            result = self.getValue(reco,quantity)
                            self.data[variable+eff_c][emu]['total'].Fill(eff_x_val,event_weight)
                            # fill good  (matched & tagged)
                            if self.ops[logic_operator[vv]](result,good_condition[vv]):
                                self.data[variable+eff_c][emu]['good'].Fill(eff_x_val,event_weight)
                            # fill mis   (matched & mis-tagged)
                            else:
                                self.data[variable+eff_c][emu]['mis'].Fill(eff_x_val,event_weight)
                else:
                    if reco_object.DeltaR(truth_object) < dr_match:
                        # fill total (matched)
                        result = self.getValue(reco,quantity)
                        self.data[variable+eff_c][emu]['total'].Fill(eff_x_val,event_weight)
                        # fill good  (matched & tagged)
                        if self.ops[logic_operator[vv]](result,good_condition[vv]):
                            self.data[variable+eff_c][emu]['good'].Fill(eff_x_val,event_weight)
                        # fill mis   (matched & mis-tagged)
                        else:
                            self.data[variable+eff_c][emu]['mis'].Fill(eff_x_val,event_weight)

        return
Beispiel #2
0
    def EventLoop(self):
        """Loop over events."""
        total_entries = self.ttree.GetEntries()
        if self.p_nevents < 0 or self.p_nevents > total_entries:
            nEntries = total_entries
        else:
            nEntries = self.p_nevents
        entry = 0

        print
        print 
        print " RUNNING OVER ",self.f.GetName(),": ",nEntries," entries"
        print

        while entry < nEntries:

            self.ttree.GetEntry(entry)
            if not entry%1000: print " -> Entry ",entry

            ## -- Get some event info
            if self.ttree.ejets:  lep = 'el'
            else:                 lep = 'mu'
            if self.p_lepton!='muel' and lep!=self.p_lepton:
                entry+=1
                continue

            self.BuildObjects()

            ## -- Apply cuts (if necessary)
            failed_event = False
            if self.p_cuts:
                failed_event = self.ApplyCuts()

            if failed_event:
                entry+=1
                continue

            scaleFactor = self.getSF()

            if self.p_plot1d == 'efficiency':
                self.getEff(lep,scaleFactor)
            ## -- Loop over variables that we want
            else:
                custom_vars = addData.custom_variables(self.ttree,self.p_custom_vars,self.event_objects)
                for variable in self.p_variables:
                    try:
                        values    = custom_vars[variable]
                    except KeyError:
                        if '.' in variable:
                            name,attr = variable.split('.')
                            quantity  = self.key2attr[attr.lower()]
                            if type(self.event_objects[name])==list:
                                values = []
                                for py_object in self.event_objects[name]:
                                    values.append( self.getValue(py_object,quantity) )
                            else:
                                values = [ self.getValue(py_object,quantity) ]
                        else:
                            values = self.event_objects[variable]

                    ## -- If there are no values, no need to continue!
                    if not values:
                        continue
                    ## -- Keeping everything as a list for uniform interfaces
                    if type(values)==float:
                        values = [values]

                    scaleFactor = [scaleFactor for _ in values]
                    ## Scale by GeV for variables with that unit
                    if not any(x in variable for x in self.nonGeVvars):
                        values = [i/self.GeV for i in values]

                    ## saving the data to plot later ##
                    self.save_event(variable,values,scaleFactor,lep)


            entry+=1
            # -- end this entry -- #

        return